Muhammad Norhalimi, Taghfirul Azhima Yoga Siswa
{"title":"Optimasi Seleksi Fitur Information Gain pada Algoritma Naïve Bayes dan K-Nearest Neighbor","authors":"Muhammad Norhalimi, Taghfirul Azhima Yoga Siswa","doi":"10.14421/jiska.2022.7.3.237-255","DOIUrl":null,"url":null,"abstract":"There was an increase in the number of late payments of tuition fees by 3,018 from a total of 5,535 students at the end of 2020. This study uses the Python library which requires data to be of numeric type, so it requires data transformation according to the type of data in the study, data that has a scale is transformed using an ordinal encoder, and data that does not have a scale is transformed using one-hot encoding. The purpose of this study was to evaluate the performance of the Naïve Bayes algorithm and K-Nearest Neighbor with a confusion matrix in predicting late payment of tuition fees at UMKT. The dataset used in this study was sourced from the financial administration bureau as many as 12,408 data with a distribution of 90:10. Based on the results of the calculation of the selection of information gain features, the best 4 attributes that influence the research are obtained, namely faculty, study program, class, and gender. The results of the evaluation of the confusion matrix that have the best performance using the Naïve Bayes with information gain algorithm obtain an accuracy of 55.19%, while the K-Nearest Neighbor with information gain only obtains an accuracy of 50.76%. Based on the accuracy results obtained in the prediction of late payment of tuition fees by using attributes derived from information gain, it influences increasing the accuracy of Naïve Bayes, but the use of the information gain attribute on the K-Nearest Neighbor algorithm makes the accuracy obtained decrease.","PeriodicalId":34216,"journal":{"name":"JISKA Jurnal Informatika Sunan Kalijaga","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JISKA Jurnal Informatika Sunan Kalijaga","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14421/jiska.2022.7.3.237-255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

迟交学费的人数比2020年底的5535名学生增加了3018人。这项研究使用Python库,该库要求数据为数字类型,因此需要根据研究中的数据类型进行数据转换,有刻度的数据使用顺序编码器进行转换,没有刻度的数据则使用一个热编码进行转换。本研究的目的是评估Naïve Bayes算法和具有混淆矩阵的K-最近邻算法在预测UMKT延迟支付学费方面的性能。本研究中使用的数据集来自金融管理局,多达12408个数据,分布为90:10。基于信息获取特征选择的计算结果,获得了影响研究的最佳4个属性,即教师、学习计划、班级和性别。使用具有信息增益的Naïve Bayes算法对具有最佳性能的混淆矩阵的评估结果获得了55.19%的准确率,而具有信息收益的K最近邻仅获得了50.76%的准确率,它影响了Naive Bayes算法精度的提高,但在K-最近邻算法中使用信息增益属性会降低算法的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimasi Seleksi Fitur Information Gain pada Algoritma Naïve Bayes dan K-Nearest Neighbor
There was an increase in the number of late payments of tuition fees by 3,018 from a total of 5,535 students at the end of 2020. This study uses the Python library which requires data to be of numeric type, so it requires data transformation according to the type of data in the study, data that has a scale is transformed using an ordinal encoder, and data that does not have a scale is transformed using one-hot encoding. The purpose of this study was to evaluate the performance of the Naïve Bayes algorithm and K-Nearest Neighbor with a confusion matrix in predicting late payment of tuition fees at UMKT. The dataset used in this study was sourced from the financial administration bureau as many as 12,408 data with a distribution of 90:10. Based on the results of the calculation of the selection of information gain features, the best 4 attributes that influence the research are obtained, namely faculty, study program, class, and gender. The results of the evaluation of the confusion matrix that have the best performance using the Naïve Bayes with information gain algorithm obtain an accuracy of 55.19%, while the K-Nearest Neighbor with information gain only obtains an accuracy of 50.76%. Based on the accuracy results obtained in the prediction of late payment of tuition fees by using attributes derived from information gain, it influences increasing the accuracy of Naïve Bayes, but the use of the information gain attribute on the K-Nearest Neighbor algorithm makes the accuracy obtained decrease.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
21
审稿时长
12 weeks
期刊最新文献
Pemodelan Proses Bisnis Kuliah Online MOOCs menggunakan BPMN (Studi Kasus alison.com) Analisis Bibliometrik Publikasi Isu Kebocoran Data Menggunakan VOSviewer Klasifikasi Sentimen Masyarakat Terhadap Proses Pemindahan Ibu Kota Negara (IKN) Indonesia pada Media Sosial Twitter Menggunakan Metode Naïve Bayes Klasifikasi Tingkat Kerusakan Sektor Pasca Bencana Alam Menggunakan Metode MULTIMOORA Berbasis Web Pembuatan Ergonomic Mechanical Keyboard untuk Mengurangi Cidera Tangan Menggunakan Teknologi Arduino
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1