M. Varga, Marijan Grgić, Olga Bjelotomić Oršulić, Tomislav Bašić
{"title":"数字高程模型分辨率对克罗地亚某研究区重力地形校正的影响","authors":"M. Varga, Marijan Grgić, Olga Bjelotomić Oršulić, Tomislav Bašić","doi":"10.15233/GFZ.2019.36.1","DOIUrl":null,"url":null,"abstract":"High-resolution digital elevation models (DEMs) have become available in the last decade. They are used in geodesy and geophysics as the main data for modeling of topographic mass effects included in gravimetric and gradiometric measurements. In modeling process, gravimeric terrain correction is the central quantity which accounts for the variations of topographic masses around measured stations. This study deals with one segment of terrain correction computation: the impact of the resolution of digital elevation models. Computations are performed on study area of Republic of Croatia. Newly created DEM/DBM for the study area is created from global digital surface model ASTER for continental area, and digital bathymetric model GEBCO for the sea area. DEMs with lower resolution were created by resampling of the created ASTER/GEBCO DEM/DBM in 1″ resolution. Terrain correction map is computed and published for the first time for the Republic of Croatia. The differences between terrain\ncorrection solutions obtained by using lower resolution DEMs compared to the solution obtained by using DEM with 1″ are indicating average influence of DEM resolution on terrain correction from 0,5·10–5 to 3·10–5 ms–2, for DEMs with lower resolution than 5″. The results also reveal that rugged and mountainous areas are particularly problematic in such computations.","PeriodicalId":50419,"journal":{"name":"Geofizika","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2019-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Influence of digital elevation model resolution on gravimetric terrain correction over a study-area of Croatia\",\"authors\":\"M. Varga, Marijan Grgić, Olga Bjelotomić Oršulić, Tomislav Bašić\",\"doi\":\"10.15233/GFZ.2019.36.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-resolution digital elevation models (DEMs) have become available in the last decade. They are used in geodesy and geophysics as the main data for modeling of topographic mass effects included in gravimetric and gradiometric measurements. In modeling process, gravimeric terrain correction is the central quantity which accounts for the variations of topographic masses around measured stations. This study deals with one segment of terrain correction computation: the impact of the resolution of digital elevation models. Computations are performed on study area of Republic of Croatia. Newly created DEM/DBM for the study area is created from global digital surface model ASTER for continental area, and digital bathymetric model GEBCO for the sea area. DEMs with lower resolution were created by resampling of the created ASTER/GEBCO DEM/DBM in 1″ resolution. Terrain correction map is computed and published for the first time for the Republic of Croatia. The differences between terrain\\ncorrection solutions obtained by using lower resolution DEMs compared to the solution obtained by using DEM with 1″ are indicating average influence of DEM resolution on terrain correction from 0,5·10–5 to 3·10–5 ms–2, for DEMs with lower resolution than 5″. The results also reveal that rugged and mountainous areas are particularly problematic in such computations.\",\"PeriodicalId\":50419,\"journal\":{\"name\":\"Geofizika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geofizika\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.15233/GFZ.2019.36.1\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geofizika","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.15233/GFZ.2019.36.1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Influence of digital elevation model resolution on gravimetric terrain correction over a study-area of Croatia
High-resolution digital elevation models (DEMs) have become available in the last decade. They are used in geodesy and geophysics as the main data for modeling of topographic mass effects included in gravimetric and gradiometric measurements. In modeling process, gravimeric terrain correction is the central quantity which accounts for the variations of topographic masses around measured stations. This study deals with one segment of terrain correction computation: the impact of the resolution of digital elevation models. Computations are performed on study area of Republic of Croatia. Newly created DEM/DBM for the study area is created from global digital surface model ASTER for continental area, and digital bathymetric model GEBCO for the sea area. DEMs with lower resolution were created by resampling of the created ASTER/GEBCO DEM/DBM in 1″ resolution. Terrain correction map is computed and published for the first time for the Republic of Croatia. The differences between terrain
correction solutions obtained by using lower resolution DEMs compared to the solution obtained by using DEM with 1″ are indicating average influence of DEM resolution on terrain correction from 0,5·10–5 to 3·10–5 ms–2, for DEMs with lower resolution than 5″. The results also reveal that rugged and mountainous areas are particularly problematic in such computations.
期刊介绍:
The Geofizika journal succeeds the Papers series (Radovi), which has been published since 1923 at the Geophysical Institute in Zagreb (current the Department of Geophysics, Faculty of Science, University of Zagreb).
Geofizika publishes contributions dealing with physics of the atmosphere, the sea and the Earth''s interior.