使用深度学习技术进行准确的指纹识别,增强儿童安全

Seba Aziz Sahy, Yi-Ning Niu, Ahmed L. Khalaf, Jamal Fadhil Tawfeq, Ahmed Dheyaa Radhi, Poh Soon JosephNg
{"title":"使用深度学习技术进行准确的指纹识别,增强儿童安全","authors":"Seba Aziz Sahy, Yi-Ning Niu, Ahmed L. Khalaf, Jamal Fadhil Tawfeq, Ahmed Dheyaa Radhi, Poh Soon JosephNg","doi":"10.21533/pen.v11i3.3625","DOIUrl":null,"url":null,"abstract":"Utilizing deep learning algorithms to differentiate the fingerprints of children can greatly enhance their safety. This advanced technology enables precise identification of individual children, facilitating improved monitoring and tracking of their activities and movements. This can effectively prevent abductions and other forms of harm, while also providing a valuable resource for law enforcement and other organizations responsible for safeguarding children. Furthermore, the use of deep learning algorithms minimizes the potential for errors and enhances the overall accuracy of fingerprint recognition. Overall, implementing this technology has immense potential to significantly improve the safety of children in various settings. Our experiments have demonstrated that deep learning significantly enhances the accuracy of fingerprint recognition for children. The model accurately classified fingerprints with an overall accuracy rate of 93%, surpassing traditional fingerprint recognition techniques by a significant margin. Additionally, it correctly identified individual children's fingerprints with an accuracy rate of 89%, showcasing its ability to distinguish between different sets of fingerprints belonging to different children.","PeriodicalId":37519,"journal":{"name":"Periodicals of Engineering and Natural Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing child safety with accurate fingerprint identification using deep learning technology\",\"authors\":\"Seba Aziz Sahy, Yi-Ning Niu, Ahmed L. Khalaf, Jamal Fadhil Tawfeq, Ahmed Dheyaa Radhi, Poh Soon JosephNg\",\"doi\":\"10.21533/pen.v11i3.3625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Utilizing deep learning algorithms to differentiate the fingerprints of children can greatly enhance their safety. This advanced technology enables precise identification of individual children, facilitating improved monitoring and tracking of their activities and movements. This can effectively prevent abductions and other forms of harm, while also providing a valuable resource for law enforcement and other organizations responsible for safeguarding children. Furthermore, the use of deep learning algorithms minimizes the potential for errors and enhances the overall accuracy of fingerprint recognition. Overall, implementing this technology has immense potential to significantly improve the safety of children in various settings. Our experiments have demonstrated that deep learning significantly enhances the accuracy of fingerprint recognition for children. The model accurately classified fingerprints with an overall accuracy rate of 93%, surpassing traditional fingerprint recognition techniques by a significant margin. Additionally, it correctly identified individual children's fingerprints with an accuracy rate of 89%, showcasing its ability to distinguish between different sets of fingerprints belonging to different children.\",\"PeriodicalId\":37519,\"journal\":{\"name\":\"Periodicals of Engineering and Natural Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodicals of Engineering and Natural Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21533/pen.v11i3.3625\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodicals of Engineering and Natural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21533/pen.v11i3.3625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

利用深度学习算法来区分儿童的指纹,可以大大提高他们的安全性。这种先进的技术可以精确地识别每个孩子,促进对他们的活动和运动的监测和跟踪。这可以有效地防止绑架和其他形式的伤害,同时也为执法部门和负责保护儿童的其他组织提供宝贵的资源。此外,深度学习算法的使用最大限度地减少了错误的可能性,提高了指纹识别的整体准确性。总的来说,实施这项技术具有巨大的潜力,可以显着提高儿童在各种环境中的安全性。我们的实验表明,深度学习显著提高了儿童指纹识别的准确性。该模型对指纹进行了准确分类,总体准确率达到93%,大大超过了传统的指纹识别技术。此外,它正确识别单个儿童的指纹的准确率达到89%,显示了它区分不同儿童的不同指纹集的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing child safety with accurate fingerprint identification using deep learning technology
Utilizing deep learning algorithms to differentiate the fingerprints of children can greatly enhance their safety. This advanced technology enables precise identification of individual children, facilitating improved monitoring and tracking of their activities and movements. This can effectively prevent abductions and other forms of harm, while also providing a valuable resource for law enforcement and other organizations responsible for safeguarding children. Furthermore, the use of deep learning algorithms minimizes the potential for errors and enhances the overall accuracy of fingerprint recognition. Overall, implementing this technology has immense potential to significantly improve the safety of children in various settings. Our experiments have demonstrated that deep learning significantly enhances the accuracy of fingerprint recognition for children. The model accurately classified fingerprints with an overall accuracy rate of 93%, surpassing traditional fingerprint recognition techniques by a significant margin. Additionally, it correctly identified individual children's fingerprints with an accuracy rate of 89%, showcasing its ability to distinguish between different sets of fingerprints belonging to different children.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
140
审稿时长
7 weeks
期刊介绍: *Industrial Engineering: 1 . Ergonomics 2 . Manufacturing 3 . TQM/quality engineering, reliability/maintenance engineering 4 . Production Planning 5 . Facility location, layout, design, materials handling 6 . Education, case studies 7 . Inventory, logistics, transportation, supply chain management 8 . Management 9 . Project/operations management, scheduling 10 . Information systems for production and management 11 . Innovation, knowledge management, organizational learning *Mechanical Engineering: 1 . Energy 2 . Machine Design 3 . Engineering Materials 4 . Manufacturing 5 . Mechatronics & Robotics 6 . Transportation 7 . Fluid Mechanics 8 . Optical Engineering 9 . Nanotechnology 10 . Maintenance & Safety *Computer Science: 1 . Computational Intelligence 2 . Computer Graphics 3 . Data Mining 4 . Human-Centered Computing 5 . Internet and Web Computing 6 . Mobile and Cloud computing 7 . Software Engineering 8 . Online Social Networks *Electrical and electronics engineering 1 . Sensor, automation and instrumentation technology 2 . Telecommunications 3 . Power systems 4 . Electronics 5 . Nanotechnology *Architecture: 1 . Advanced digital applications in architecture practice and computation within Generative processes of design 2 . Computer science, biology and ecology connected with structural engineering 3 . Technology and sustainability in architecture *Bioengineering: 1 . Medical Sciences 2 . Biological and Biomedical Sciences 3 . Agriculture and Life Sciences 4 . Biology and neuroscience 5 . Biological Sciences (Botany, Forestry, Cell Biology, Marine Biology, Zoology) [...]
期刊最新文献
First Morphological and Genetic Record and Confirmation of Korean Rockfish Sebastes schlegelii Hilgendorf, 1880 in the Black Sea Coast of Türkiye Conducting Polymer Films on Zn Deposited Carbon Electrode The Genotoxic Damage in Cyprinus carpio Exposed to Abamectin A low-cost podoscope for extracting morphological features of the foot Investigation of Groundwater Zooplankton Fauna from Water Wells in Kilis Province from Türkiye
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1