{"title":"气室几何设计对提高振荡水柱波能转换器输出功率的影响","authors":"Mamdouh Elmallah, M. Elgohary, M. Shouman","doi":"10.4031/mtsj.57.1.14","DOIUrl":null,"url":null,"abstract":"Abstract This paper represents the effects of geometry and design of an oscillating water column energy converter air chamber on the airflow response. The primary goal of this research is to use different shapes of air chambers, such as rectangular, cylindrical, and conical\n air chambers with varying cross sections, to optimize the air velocity entering the turbine, to obtain the maximum power available in a progressive wave with a constant period and wavelength. Modeling and numericalsimulation are performed by using the commercial software ANSYS. Since this\n paper is concerned with the effect of air flow velocity, a vent is located at the chamber's outlet rather than a turbine. In order to obtain the exit air velocity results, the wave system air characteristics results are applied as an input air flowfor three air chamber cases. The results show\n that the air velocity flow increasedsignificantly from 7.14 m/s in the rectangular air chamber to 10.4 m/s in cylindrical air chamber and reached a maximum of 14.2 m/s in the conical airchamber.","PeriodicalId":49878,"journal":{"name":"Marine Technology Society Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effect of Air Chamber Geometrical Design for Enhancing the Output Power of Oscillating Water Column Wave Energy Converter\",\"authors\":\"Mamdouh Elmallah, M. Elgohary, M. Shouman\",\"doi\":\"10.4031/mtsj.57.1.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper represents the effects of geometry and design of an oscillating water column energy converter air chamber on the airflow response. The primary goal of this research is to use different shapes of air chambers, such as rectangular, cylindrical, and conical\\n air chambers with varying cross sections, to optimize the air velocity entering the turbine, to obtain the maximum power available in a progressive wave with a constant period and wavelength. Modeling and numericalsimulation are performed by using the commercial software ANSYS. Since this\\n paper is concerned with the effect of air flow velocity, a vent is located at the chamber's outlet rather than a turbine. In order to obtain the exit air velocity results, the wave system air characteristics results are applied as an input air flowfor three air chamber cases. The results show\\n that the air velocity flow increasedsignificantly from 7.14 m/s in the rectangular air chamber to 10.4 m/s in cylindrical air chamber and reached a maximum of 14.2 m/s in the conical airchamber.\",\"PeriodicalId\":49878,\"journal\":{\"name\":\"Marine Technology Society Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Technology Society Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.4031/mtsj.57.1.14\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, OCEAN\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Technology Society Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4031/mtsj.57.1.14","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
The Effect of Air Chamber Geometrical Design for Enhancing the Output Power of Oscillating Water Column Wave Energy Converter
Abstract This paper represents the effects of geometry and design of an oscillating water column energy converter air chamber on the airflow response. The primary goal of this research is to use different shapes of air chambers, such as rectangular, cylindrical, and conical
air chambers with varying cross sections, to optimize the air velocity entering the turbine, to obtain the maximum power available in a progressive wave with a constant period and wavelength. Modeling and numericalsimulation are performed by using the commercial software ANSYS. Since this
paper is concerned with the effect of air flow velocity, a vent is located at the chamber's outlet rather than a turbine. In order to obtain the exit air velocity results, the wave system air characteristics results are applied as an input air flowfor three air chamber cases. The results show
that the air velocity flow increasedsignificantly from 7.14 m/s in the rectangular air chamber to 10.4 m/s in cylindrical air chamber and reached a maximum of 14.2 m/s in the conical airchamber.
期刊介绍:
The Marine Technology Society Journal is the flagship publication of the Marine Technology Society. It publishes the highest caliber, peer-reviewed papers, six times a year, on subjects of interest to the society: marine technology, ocean science, marine policy, and education.