Wenhui Gong, S. Jiang, Jianbo Wang, Qian Gong, Chengxin Zhang, Shenglin Ge
{"title":"髓源性生长因子在体外和体内急性肺损伤中的作用研究","authors":"Wenhui Gong, S. Jiang, Jianbo Wang, Qian Gong, Chengxin Zhang, Shenglin Ge","doi":"10.1177/1721727x231185390","DOIUrl":null,"url":null,"abstract":"Objectives: Bone marrow-derived mesenchymal stem cells (BMSCs) are considered to have potential clinical application value in the treatment of acute lung injury (ALI). Myeloid-derived growth factor (MYDGF) can promote the proliferation of stem cell. We hypothesized that MYDGF may play a role in reducing lung injury in vitro and in vivo through bone marrow mesenchymal stem cells. Methods: An in vitro model of lipopolysaccharide (LPS)(MLE-12) was established, which was divided into five groups: A: MLE-12; B: MLE-12+LPS; C: MLE-12+LPS + BMSCs; D: MLE-12+LPS + MYDGF; and E: MLE-12+LPS + BMSCs + MYDGF. A Cell Counting Kit-8 was used to detect the OD value. And an ALI model was constructed by inducing mice with a lipopolysaccharide. Forty male Balb/c mice were randomly divided into five groups: A control group; B: model group; C: LPS + BMSCs; D: LPS + MYDGF; E: LPS +BMSCs +MYDGF. Specimens were collected after 24 h. Hematoxylin-eosin (HE)-staining was performed on the tissue sections. The protein concentration in the alveolar lavage fluid was measure by bicinchoninic acid (BCA). The NF-κB, p-Akt, Bax, and Bcl-2 protein expression was detected through Western blotting, and Enzyme linked immunosorbent assay (ELISA) was used to measure the expression of serum interleukin-6, interleukin-10, and TNF-α. Results: Compared with the model group, BMSCs and MYDGF can alleviate the ALI induced by lipopolysaccharide in vitro and vivo ( p < .05). Conclusion: We found that the combined treatment effect of MYDGF and BMSCs was better than using MYDGF or BMSCs alone. We speculate that a pretreatment with MYDGF after ALI in mice may improve the survival and growth of transplanted MSCs, thereby improving the curative effect of cell transplantation.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study of the role of myeloid-derived growth factor on acute lung injury in vitro and In vivo\",\"authors\":\"Wenhui Gong, S. Jiang, Jianbo Wang, Qian Gong, Chengxin Zhang, Shenglin Ge\",\"doi\":\"10.1177/1721727x231185390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objectives: Bone marrow-derived mesenchymal stem cells (BMSCs) are considered to have potential clinical application value in the treatment of acute lung injury (ALI). Myeloid-derived growth factor (MYDGF) can promote the proliferation of stem cell. We hypothesized that MYDGF may play a role in reducing lung injury in vitro and in vivo through bone marrow mesenchymal stem cells. Methods: An in vitro model of lipopolysaccharide (LPS)(MLE-12) was established, which was divided into five groups: A: MLE-12; B: MLE-12+LPS; C: MLE-12+LPS + BMSCs; D: MLE-12+LPS + MYDGF; and E: MLE-12+LPS + BMSCs + MYDGF. A Cell Counting Kit-8 was used to detect the OD value. And an ALI model was constructed by inducing mice with a lipopolysaccharide. Forty male Balb/c mice were randomly divided into five groups: A control group; B: model group; C: LPS + BMSCs; D: LPS + MYDGF; E: LPS +BMSCs +MYDGF. Specimens were collected after 24 h. Hematoxylin-eosin (HE)-staining was performed on the tissue sections. The protein concentration in the alveolar lavage fluid was measure by bicinchoninic acid (BCA). The NF-κB, p-Akt, Bax, and Bcl-2 protein expression was detected through Western blotting, and Enzyme linked immunosorbent assay (ELISA) was used to measure the expression of serum interleukin-6, interleukin-10, and TNF-α. Results: Compared with the model group, BMSCs and MYDGF can alleviate the ALI induced by lipopolysaccharide in vitro and vivo ( p < .05). Conclusion: We found that the combined treatment effect of MYDGF and BMSCs was better than using MYDGF or BMSCs alone. We speculate that a pretreatment with MYDGF after ALI in mice may improve the survival and growth of transplanted MSCs, thereby improving the curative effect of cell transplantation.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/1721727x231185390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/1721727x231185390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A study of the role of myeloid-derived growth factor on acute lung injury in vitro and In vivo
Objectives: Bone marrow-derived mesenchymal stem cells (BMSCs) are considered to have potential clinical application value in the treatment of acute lung injury (ALI). Myeloid-derived growth factor (MYDGF) can promote the proliferation of stem cell. We hypothesized that MYDGF may play a role in reducing lung injury in vitro and in vivo through bone marrow mesenchymal stem cells. Methods: An in vitro model of lipopolysaccharide (LPS)(MLE-12) was established, which was divided into five groups: A: MLE-12; B: MLE-12+LPS; C: MLE-12+LPS + BMSCs; D: MLE-12+LPS + MYDGF; and E: MLE-12+LPS + BMSCs + MYDGF. A Cell Counting Kit-8 was used to detect the OD value. And an ALI model was constructed by inducing mice with a lipopolysaccharide. Forty male Balb/c mice were randomly divided into five groups: A control group; B: model group; C: LPS + BMSCs; D: LPS + MYDGF; E: LPS +BMSCs +MYDGF. Specimens were collected after 24 h. Hematoxylin-eosin (HE)-staining was performed on the tissue sections. The protein concentration in the alveolar lavage fluid was measure by bicinchoninic acid (BCA). The NF-κB, p-Akt, Bax, and Bcl-2 protein expression was detected through Western blotting, and Enzyme linked immunosorbent assay (ELISA) was used to measure the expression of serum interleukin-6, interleukin-10, and TNF-α. Results: Compared with the model group, BMSCs and MYDGF can alleviate the ALI induced by lipopolysaccharide in vitro and vivo ( p < .05). Conclusion: We found that the combined treatment effect of MYDGF and BMSCs was better than using MYDGF or BMSCs alone. We speculate that a pretreatment with MYDGF after ALI in mice may improve the survival and growth of transplanted MSCs, thereby improving the curative effect of cell transplantation.