聚合物基TiO2纳米复合膜的合成及有机污染物的去除

IF 4.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY International Journal of Smart and Nano Materials Pub Date : 2021-04-03 DOI:10.1080/19475411.2021.1901792
Junya Wu, Sha Yi, Yixuan Wang, Jun Yao, Wei Gao
{"title":"聚合物基TiO2纳米复合膜的合成及有机污染物的去除","authors":"Junya Wu, Sha Yi, Yixuan Wang, Jun Yao, Wei Gao","doi":"10.1080/19475411.2021.1901792","DOIUrl":null,"url":null,"abstract":"ABSTRACT Titanium dioxide (TiO2) nanoparticles are efficient photocatalysis for treating organic pollutants in water. Immobilizing TiO2 nanoparticles not only enables the reuse of nanoparticles but also prevents the harmful impact of releasing nanoparticles into the aquatic environment. In this study, a porous composite microfiber membrane based on polyacrylonitrile (PAN) with TiO2 nanoparticles has been synthesized by electrospinning technique. The new membrane system has exhibited excellent adsorptive-photocatalytic property to degrade Methylene blue (MB). Using the nonlinear form of the pseudo-first-order, pseudo-second-order, Elovich, and Intra-particle diffusion models, the adsorption mechanism was analyzed. Coupling with adsorption and photocatalysis, the efficiency of this membrane system was illustrated via the multistage linear form of the pseudo-first-order kinetic; and the electrical energy per order (EEO) confirmed the lowest energy requirements to transfer selected pollutants. Combining the results of SEM, BET, FTIR, XRD and TGA, it revealed the relationship of microstructure, composition, and MB decomposition performance. The finding presents new knowledge for material design and evaluation of polymers/oxides membrane systems for remediating organic pollutants in water. Graphical abstract","PeriodicalId":48516,"journal":{"name":"International Journal of Smart and Nano Materials","volume":"12 1","pages":"129 - 145"},"PeriodicalIF":4.5000,"publicationDate":"2021-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19475411.2021.1901792","citationCount":"13","resultStr":"{\"title\":\"Polymer-based TiO2 nanocomposite membrane: synthesis and organic pollutant removal\",\"authors\":\"Junya Wu, Sha Yi, Yixuan Wang, Jun Yao, Wei Gao\",\"doi\":\"10.1080/19475411.2021.1901792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Titanium dioxide (TiO2) nanoparticles are efficient photocatalysis for treating organic pollutants in water. Immobilizing TiO2 nanoparticles not only enables the reuse of nanoparticles but also prevents the harmful impact of releasing nanoparticles into the aquatic environment. In this study, a porous composite microfiber membrane based on polyacrylonitrile (PAN) with TiO2 nanoparticles has been synthesized by electrospinning technique. The new membrane system has exhibited excellent adsorptive-photocatalytic property to degrade Methylene blue (MB). Using the nonlinear form of the pseudo-first-order, pseudo-second-order, Elovich, and Intra-particle diffusion models, the adsorption mechanism was analyzed. Coupling with adsorption and photocatalysis, the efficiency of this membrane system was illustrated via the multistage linear form of the pseudo-first-order kinetic; and the electrical energy per order (EEO) confirmed the lowest energy requirements to transfer selected pollutants. Combining the results of SEM, BET, FTIR, XRD and TGA, it revealed the relationship of microstructure, composition, and MB decomposition performance. The finding presents new knowledge for material design and evaluation of polymers/oxides membrane systems for remediating organic pollutants in water. Graphical abstract\",\"PeriodicalId\":48516,\"journal\":{\"name\":\"International Journal of Smart and Nano Materials\",\"volume\":\"12 1\",\"pages\":\"129 - 145\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2021-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/19475411.2021.1901792\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Smart and Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/19475411.2021.1901792\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Smart and Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/19475411.2021.1901792","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 13

摘要

二氧化钛纳米粒子是处理水中有机污染物的高效光催化材料。固定化TiO2纳米颗粒不仅可以实现纳米颗粒的重复利用,还可以防止纳米颗粒释放到水生环境中的有害影响。本研究采用静电纺丝技术合成了一种以聚丙烯腈(PAN)为基材的纳米TiO2多孔复合超纤维膜。该膜体系对亚甲基蓝(MB)具有良好的吸附光催化性能。采用拟一阶、拟二阶、Elovich和颗粒内扩散模型的非线性形式,分析了吸附机理。耦合吸附和光催化作用,通过准一级动力学的多级线性形式说明了该膜体系的效率;每订单电能(EEO)确认了转移选定污染物所需的最低能量。结合SEM、BET、FTIR、XRD、TGA等测试结果,揭示了其微观结构、组成与MB分解性能的关系。这一发现为修复水中有机污染物的聚合物/氧化物膜系统的材料设计和评价提供了新的知识。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Polymer-based TiO2 nanocomposite membrane: synthesis and organic pollutant removal
ABSTRACT Titanium dioxide (TiO2) nanoparticles are efficient photocatalysis for treating organic pollutants in water. Immobilizing TiO2 nanoparticles not only enables the reuse of nanoparticles but also prevents the harmful impact of releasing nanoparticles into the aquatic environment. In this study, a porous composite microfiber membrane based on polyacrylonitrile (PAN) with TiO2 nanoparticles has been synthesized by electrospinning technique. The new membrane system has exhibited excellent adsorptive-photocatalytic property to degrade Methylene blue (MB). Using the nonlinear form of the pseudo-first-order, pseudo-second-order, Elovich, and Intra-particle diffusion models, the adsorption mechanism was analyzed. Coupling with adsorption and photocatalysis, the efficiency of this membrane system was illustrated via the multistage linear form of the pseudo-first-order kinetic; and the electrical energy per order (EEO) confirmed the lowest energy requirements to transfer selected pollutants. Combining the results of SEM, BET, FTIR, XRD and TGA, it revealed the relationship of microstructure, composition, and MB decomposition performance. The finding presents new knowledge for material design and evaluation of polymers/oxides membrane systems for remediating organic pollutants in water. Graphical abstract
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Smart and Nano Materials
International Journal of Smart and Nano Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.30
自引率
5.10%
发文量
39
审稿时长
11 weeks
期刊介绍: The central aim of International Journal of Smart and Nano Materials is to publish original results, critical reviews, technical discussion, and book reviews related to this compelling research field: smart and nano materials, and their applications. The papers published in this journal will provide cutting edge information and instructive research guidance, encouraging more scientists to make their contribution to this dynamic research field.
期刊最新文献
Confined gas transport in low-dimensional materials The rate dependence of the dielectric strength of dielectric elastomers Multi-stable straw-like carbon nanotubes for mechanical programmability at microscale Selective and asymmetric ion transport in covalent organic framework-based two-dimensional nanofluidic devices Nanodiamond reinforced self-healing and transparent poly(urethane–urea) protective coating for scratch resistance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1