Wang Siyu, Gao Xin, Sun Hao, Zheng Xin-wei, Sun Xian
{"title":"基于卷积神经网络的高分辨率SAR图像飞机检测方法","authors":"Wang Siyu, Gao Xin, Sun Hao, Zheng Xin-wei, Sun Xian","doi":"10.12000/JR17009","DOIUrl":null,"url":null,"abstract":"In the field of image processing using Synthetic Aperture Radar (SAR), aircraft detection is a challenging task. Conventional approaches always extract targets from the background of an image using image segmentation methods. Nevertheless, these methods mainly focus on pixel contrast and neglect the integrity of the target, which leads to locating the object inaccurately. In this study, we build a novel SAR aircraft detection framework. Compared to traditional methods, an improved saliency-based method is proposed to locate candidates coarsely and quickly in large scenes. This proposed method is verified to be more efficient compared with the sliding window method. Next, we design a convolutional neural network fitting in SAR images to accurately identify the candidates and obtain the final detection result. Moreover, to overcome the problem of limited available SAR data, we propose four data augmentation methods comprising translation, speckle noising, contrast enhancement, and small-angle rotation. Experimental results show that our framework achieves excellent performance on the high-resolution TerraSAR-X dataset.","PeriodicalId":37701,"journal":{"name":"雷达学报","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"An Aircraft Detection Method Based on Convolutional Neural Networks in High-Resolution SAR Images\",\"authors\":\"Wang Siyu, Gao Xin, Sun Hao, Zheng Xin-wei, Sun Xian\",\"doi\":\"10.12000/JR17009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the field of image processing using Synthetic Aperture Radar (SAR), aircraft detection is a challenging task. Conventional approaches always extract targets from the background of an image using image segmentation methods. Nevertheless, these methods mainly focus on pixel contrast and neglect the integrity of the target, which leads to locating the object inaccurately. In this study, we build a novel SAR aircraft detection framework. Compared to traditional methods, an improved saliency-based method is proposed to locate candidates coarsely and quickly in large scenes. This proposed method is verified to be more efficient compared with the sliding window method. Next, we design a convolutional neural network fitting in SAR images to accurately identify the candidates and obtain the final detection result. Moreover, to overcome the problem of limited available SAR data, we propose four data augmentation methods comprising translation, speckle noising, contrast enhancement, and small-angle rotation. Experimental results show that our framework achieves excellent performance on the high-resolution TerraSAR-X dataset.\",\"PeriodicalId\":37701,\"journal\":{\"name\":\"雷达学报\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"雷达学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.12000/JR17009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"雷达学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.12000/JR17009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
An Aircraft Detection Method Based on Convolutional Neural Networks in High-Resolution SAR Images
In the field of image processing using Synthetic Aperture Radar (SAR), aircraft detection is a challenging task. Conventional approaches always extract targets from the background of an image using image segmentation methods. Nevertheless, these methods mainly focus on pixel contrast and neglect the integrity of the target, which leads to locating the object inaccurately. In this study, we build a novel SAR aircraft detection framework. Compared to traditional methods, an improved saliency-based method is proposed to locate candidates coarsely and quickly in large scenes. This proposed method is verified to be more efficient compared with the sliding window method. Next, we design a convolutional neural network fitting in SAR images to accurately identify the candidates and obtain the final detection result. Moreover, to overcome the problem of limited available SAR data, we propose four data augmentation methods comprising translation, speckle noising, contrast enhancement, and small-angle rotation. Experimental results show that our framework achieves excellent performance on the high-resolution TerraSAR-X dataset.
期刊介绍:
Journal of Radars was founded in 2012 by the Institute of Space and Astronautical Information Innovation of the Chinese Academy of Sciences (formerly the Institute of Electronics) and the China Radar Industry Association (CRIA), which is located in the high-end academic journal and academic exchange platform in the field of radar, and is committed to promoting and leading the scientific and technological development in the field of radar. The journal can publish Chinese papers and English papers, and is now a bimonthly journal.
Journal of Radars focuses on theory, originality and foresight, and its scope of coverage mainly includes: radar theory and system, radar signal and data processing technology, radar imaging technology, radar identification and application technology.
Journal of Radars has been included in domestic core journals and foreign Scopus, Ei and other databases, and was selected as ‘China's high-quality science and technology journals’, and ranked the first in the category of electronic technology and communication technology in the ‘Chinese Core Journals List (2023 Edition)’.