存在Soret和Dufour现象的纳米流体通过拉伸片的自由对流MHD传质流动的双dtm逼近

D. Saha, S. Sengupta
{"title":"存在Soret和Dufour现象的纳米流体通过拉伸片的自由对流MHD传质流动的双dtm逼近","authors":"D. Saha, S. Sengupta","doi":"10.37394/232012.2020.15.1","DOIUrl":null,"url":null,"abstract":"A theoretical study is made to investigate heat and mass transfer analysis on the single phase flow of an electrically conducting, Al2O3-Water nanofluid over a linearly stretching sheet in presence of Soret and Dufour effects. An applied magnetic field is considered normal to the flow, while the effect of induced magnetic field got neglected for small magnetic Reynolds number’s value of the flow field relative to the applied field. Since voltage difference at the lateral ends of the sheet is very small, the influence of the electric field is thus omitted. The governing equations representing the physical model of the fluid flow is solved by means of DTM-Padé approximations. The acquired results show that an increase in the Soret number (Dufour number) decreases (increases) the temperature profiles but increases (decreases) the concentration profiles. The axial velocity profiles found decreasing with increasing values of the magnetic parameter. Both chemical reaction and thermal radiation parameters maximize the temperature profiles whereas a reverse phenomenon is seen on concentration profiles. The obtained tables show that increasing nanoparticle volume fraction escalates skin-friction coefficient, Nusselt number and Sherwood number whereas an increase in Richardson number decreases the Nusselt number but increases the Sherwood number.","PeriodicalId":39418,"journal":{"name":"WSEAS Transactions on Fluid Mechanics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Dual DTM-Padé approximations on free convection MHD mass transfer flow of nanofluid through a stretching sheet in presence of Soret and Dufour Phenomena\",\"authors\":\"D. Saha, S. Sengupta\",\"doi\":\"10.37394/232012.2020.15.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A theoretical study is made to investigate heat and mass transfer analysis on the single phase flow of an electrically conducting, Al2O3-Water nanofluid over a linearly stretching sheet in presence of Soret and Dufour effects. An applied magnetic field is considered normal to the flow, while the effect of induced magnetic field got neglected for small magnetic Reynolds number’s value of the flow field relative to the applied field. Since voltage difference at the lateral ends of the sheet is very small, the influence of the electric field is thus omitted. The governing equations representing the physical model of the fluid flow is solved by means of DTM-Padé approximations. The acquired results show that an increase in the Soret number (Dufour number) decreases (increases) the temperature profiles but increases (decreases) the concentration profiles. The axial velocity profiles found decreasing with increasing values of the magnetic parameter. Both chemical reaction and thermal radiation parameters maximize the temperature profiles whereas a reverse phenomenon is seen on concentration profiles. The obtained tables show that increasing nanoparticle volume fraction escalates skin-friction coefficient, Nusselt number and Sherwood number whereas an increase in Richardson number decreases the Nusselt number but increases the Sherwood number.\",\"PeriodicalId\":39418,\"journal\":{\"name\":\"WSEAS Transactions on Fluid Mechanics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS Transactions on Fluid Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/232012.2020.15.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Fluid Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232012.2020.15.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3

摘要

进行了一项理论研究,以研究在存在Soret和Dufour效应的情况下,导电的Al2O3-水纳米流体在线性拉伸片材上的单相流动的传热和传质分析。外加磁场被认为是垂直于流动的,而感应磁场的影响被忽略了,因为相对于外加磁场的磁场雷诺数较小。由于片材的横向端部处的电压差非常小,因此省略了电场的影响。代表流体流动物理模型的控制方程通过DTM-Padé近似求解。获得的结果表明,Soret数(Dufour数)的增加降低(增加)了温度分布,但增加(减少)了浓度分布。轴向速度分布发现随着磁参数值的增加而减小。化学反应和热辐射参数都使温度分布最大化,而在浓度分布上则出现相反的现象。所获得的表格显示,增加纳米颗粒体积分数会增加皮肤摩擦系数、努塞尔数和舍伍德数,而理查森数的增加会降低努塞尔数,但会增加舍伍德数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dual DTM-Padé approximations on free convection MHD mass transfer flow of nanofluid through a stretching sheet in presence of Soret and Dufour Phenomena
A theoretical study is made to investigate heat and mass transfer analysis on the single phase flow of an electrically conducting, Al2O3-Water nanofluid over a linearly stretching sheet in presence of Soret and Dufour effects. An applied magnetic field is considered normal to the flow, while the effect of induced magnetic field got neglected for small magnetic Reynolds number’s value of the flow field relative to the applied field. Since voltage difference at the lateral ends of the sheet is very small, the influence of the electric field is thus omitted. The governing equations representing the physical model of the fluid flow is solved by means of DTM-Padé approximations. The acquired results show that an increase in the Soret number (Dufour number) decreases (increases) the temperature profiles but increases (decreases) the concentration profiles. The axial velocity profiles found decreasing with increasing values of the magnetic parameter. Both chemical reaction and thermal radiation parameters maximize the temperature profiles whereas a reverse phenomenon is seen on concentration profiles. The obtained tables show that increasing nanoparticle volume fraction escalates skin-friction coefficient, Nusselt number and Sherwood number whereas an increase in Richardson number decreases the Nusselt number but increases the Sherwood number.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
WSEAS Transactions on Fluid Mechanics
WSEAS Transactions on Fluid Mechanics Engineering-Computational Mechanics
CiteScore
1.50
自引率
0.00%
发文量
20
期刊介绍: WSEAS Transactions on Fluid Mechanics publishes original research papers relating to the studying of fluids. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of this particular area. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with multiphase flow, boundary layer flow, material properties, wave modelling and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.
期刊最新文献
Wind Velocity Effect on the Aerodynamic and Acoustic Behavior of a Vertical Axis Wind Turbine Aerodynamics Analysis Comparison between NACA 4412 and NREL S823 Airfoils Influence of Chemical and Radiation on an Unsteady MHD Oscillatory Flow using Artificial Neural Network (ANN) Non-Fourier Heat Flux Model for the Magnetohydrodynamic Casson Nanofluid Flow Past a Porous Stretching Sheet using the Akbari-Gangi Method Suspended Mooring Line Static Analysis using Internal XFlow Capabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1