冶金过程数学和物理建模的原理和应用

H. Sohn
{"title":"冶金过程数学和物理建模的原理和应用","authors":"H. Sohn","doi":"10.1080/25726641.2019.1706376","DOIUrl":null,"url":null,"abstract":"ABSTRACT This article reviews the principles and methods for formulating mathematical or physical models that are useful in the design, analysis and optimization of metallurgical processes. Mathematical models based on first principles are emphasised. Examples of developing new processes based on a first-principle mathematical model or a physical model are presented. Cautions and pitfalls associated with the formulation and application of mathematical models are discussed. The reader is encouraged to carefully examine correctness of the approach and assumptions made in the formulation in order to avoid an erroneous application of a model. For complex processes requiring harsh conditions, physical models are useful. The interpretation and utilisation of the results from physical models can be difficult and sometimes even misleading. This problem is greatly assuaged by combining physical modelling with mathematical modelling. For example, the use of computational fluid dynamics greatly improves the physical modelling of systems involving complex fluid flow.","PeriodicalId":43710,"journal":{"name":"Mineral Processing and Extractive Metallurgy-Transactions of the Institutions of Mining and Metallurgy","volume":"129 1","pages":"117 - 144"},"PeriodicalIF":0.9000,"publicationDate":"2020-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/25726641.2019.1706376","citationCount":"1","resultStr":"{\"title\":\"Principles and applications of mathematical and physical modelling of metallurgical processes\",\"authors\":\"H. Sohn\",\"doi\":\"10.1080/25726641.2019.1706376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This article reviews the principles and methods for formulating mathematical or physical models that are useful in the design, analysis and optimization of metallurgical processes. Mathematical models based on first principles are emphasised. Examples of developing new processes based on a first-principle mathematical model or a physical model are presented. Cautions and pitfalls associated with the formulation and application of mathematical models are discussed. The reader is encouraged to carefully examine correctness of the approach and assumptions made in the formulation in order to avoid an erroneous application of a model. For complex processes requiring harsh conditions, physical models are useful. The interpretation and utilisation of the results from physical models can be difficult and sometimes even misleading. This problem is greatly assuaged by combining physical modelling with mathematical modelling. For example, the use of computational fluid dynamics greatly improves the physical modelling of systems involving complex fluid flow.\",\"PeriodicalId\":43710,\"journal\":{\"name\":\"Mineral Processing and Extractive Metallurgy-Transactions of the Institutions of Mining and Metallurgy\",\"volume\":\"129 1\",\"pages\":\"117 - 144\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/25726641.2019.1706376\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mineral Processing and Extractive Metallurgy-Transactions of the Institutions of Mining and Metallurgy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/25726641.2019.1706376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MINING & MINERAL PROCESSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineral Processing and Extractive Metallurgy-Transactions of the Institutions of Mining and Metallurgy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/25726641.2019.1706376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 1

摘要

本文综述了建立数学或物理模型的原理和方法,这些模型在冶金过程的设计、分析和优化中很有用。强调了基于第一性原理的数学模型。介绍了基于第一原理数学模型或物理模型开发新工艺的例子。讨论了与数学模型的制定和应用相关的注意事项和陷阱。鼓励读者仔细检查公式中方法和假设的正确性,以避免模型的错误应用。对于需要苛刻条件的复杂过程,物理模型非常有用。对物理模型结果的解释和利用可能很困难,有时甚至会产生误导。通过将物理建模与数学建模相结合,大大缓解了这个问题。例如,计算流体动力学的使用大大改进了涉及复杂流体流动的系统的物理建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Principles and applications of mathematical and physical modelling of metallurgical processes
ABSTRACT This article reviews the principles and methods for formulating mathematical or physical models that are useful in the design, analysis and optimization of metallurgical processes. Mathematical models based on first principles are emphasised. Examples of developing new processes based on a first-principle mathematical model or a physical model are presented. Cautions and pitfalls associated with the formulation and application of mathematical models are discussed. The reader is encouraged to carefully examine correctness of the approach and assumptions made in the formulation in order to avoid an erroneous application of a model. For complex processes requiring harsh conditions, physical models are useful. The interpretation and utilisation of the results from physical models can be difficult and sometimes even misleading. This problem is greatly assuaged by combining physical modelling with mathematical modelling. For example, the use of computational fluid dynamics greatly improves the physical modelling of systems involving complex fluid flow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
6
期刊最新文献
Dissolution of gold in the presence of copper ion and diethylenetriamine (DETA) Adsorption of tannic acid as depressant in the flotation separation of fluorite and bastnaesite Demonstration of dry magnetic separation to upgrade the Mn:Fe ratio of a ferromanganese ore sample A mathematical model of a twin-shaft parallel flow regenerative lime kiln Beneficiation of a Nigerian lepidolite ore by sulfuric acid leaching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1