Sanjaya Sahoo, Srinivas Kuchipudi, R. Rao, M. Buragohain, C. S. Chaitanya
{"title":"低场核磁共振检测多层GFRP复合材料结构中的平面缺陷","authors":"Sanjaya Sahoo, Srinivas Kuchipudi, R. Rao, M. Buragohain, C. S. Chaitanya","doi":"10.32548/2021.me-04201","DOIUrl":null,"url":null,"abstract":"Adhesively bonded interfaces of glass fiber– reinforced plastics (GFRP) composite to rubber and rubber to propellant were investigated for planar interfacial defects with a spatial resolution of 100 μm. Single-sided low-field nuclear magnetic resonance (NMR) with a magnetic field strength of 0.3 T (12.88 MHz proton frequency) has been used for noninvasive inspection of planar defects in GFRP-based multilayered composite structures. Further, in this paper, the application of low-field NMR for adhesive liner thickness measurement is also demonstrated. The investigation revealed applicability of single-sided low-field NMR for onsite field applications. Results were compared with other nondestructive evaluation (NDE) techniques: acousto-ultrasonic and radiographic testing (RT). It is observed that single-sided low-field NMR is an excellent NDE tool to study adhesive bonds and defects such as debonding, variations in thickness to accuracies ranging from 50 to 200 μm, and degradation. In comparison with the acousto-ultrasonic technique and RT, single-sided low-field NMR is observed to be more sensitive.","PeriodicalId":49876,"journal":{"name":"Materials Evaluation","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detection of Planar Defects in Multilayered GFRP Composite Structures Using Low-Field Nuclear Magnetic Resonance\",\"authors\":\"Sanjaya Sahoo, Srinivas Kuchipudi, R. Rao, M. Buragohain, C. S. Chaitanya\",\"doi\":\"10.32548/2021.me-04201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adhesively bonded interfaces of glass fiber– reinforced plastics (GFRP) composite to rubber and rubber to propellant were investigated for planar interfacial defects with a spatial resolution of 100 μm. Single-sided low-field nuclear magnetic resonance (NMR) with a magnetic field strength of 0.3 T (12.88 MHz proton frequency) has been used for noninvasive inspection of planar defects in GFRP-based multilayered composite structures. Further, in this paper, the application of low-field NMR for adhesive liner thickness measurement is also demonstrated. The investigation revealed applicability of single-sided low-field NMR for onsite field applications. Results were compared with other nondestructive evaluation (NDE) techniques: acousto-ultrasonic and radiographic testing (RT). It is observed that single-sided low-field NMR is an excellent NDE tool to study adhesive bonds and defects such as debonding, variations in thickness to accuracies ranging from 50 to 200 μm, and degradation. In comparison with the acousto-ultrasonic technique and RT, single-sided low-field NMR is observed to be more sensitive.\",\"PeriodicalId\":49876,\"journal\":{\"name\":\"Materials Evaluation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Evaluation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.32548/2021.me-04201\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Evaluation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.32548/2021.me-04201","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 1
摘要
研究了玻璃纤维增强塑料(GFRP)与橡胶和橡胶与推进剂的粘接界面的平面缺陷,空间分辨率为100 μm。采用磁场强度为0.3 T (12.88 MHz质子频率)的单侧低场核磁共振(NMR)对gfrp基多层复合材料结构中的平面缺陷进行了无创检测。此外,本文还论证了低场核磁共振在胶粘剂衬里厚度测量中的应用。调查显示单面低场核磁共振适用于现场现场应用。结果比较了其他无损评价(NDE)技术:声-超声和射线检测(RT)。结果表明,单侧低场核磁共振是一种很好的无损检测工具,可用于研究粘接键和缺陷,如脱粘、厚度变化(精度范围为50 ~ 200 μm)和降解。与声-超声技术和RT技术相比,单侧低场核磁共振具有更高的灵敏度。
Detection of Planar Defects in Multilayered GFRP Composite Structures Using Low-Field Nuclear Magnetic Resonance
Adhesively bonded interfaces of glass fiber– reinforced plastics (GFRP) composite to rubber and rubber to propellant were investigated for planar interfacial defects with a spatial resolution of 100 μm. Single-sided low-field nuclear magnetic resonance (NMR) with a magnetic field strength of 0.3 T (12.88 MHz proton frequency) has been used for noninvasive inspection of planar defects in GFRP-based multilayered composite structures. Further, in this paper, the application of low-field NMR for adhesive liner thickness measurement is also demonstrated. The investigation revealed applicability of single-sided low-field NMR for onsite field applications. Results were compared with other nondestructive evaluation (NDE) techniques: acousto-ultrasonic and radiographic testing (RT). It is observed that single-sided low-field NMR is an excellent NDE tool to study adhesive bonds and defects such as debonding, variations in thickness to accuracies ranging from 50 to 200 μm, and degradation. In comparison with the acousto-ultrasonic technique and RT, single-sided low-field NMR is observed to be more sensitive.
期刊介绍:
Materials Evaluation publishes articles, news and features intended to increase the NDT practitioner’s knowledge of the science and technology involved in the field, bringing informative articles to the NDT public while highlighting the ongoing efforts of ASNT to fulfill its mission. M.E. is a peer-reviewed journal, relying on technicians and researchers to help grow and educate its members by providing relevant, cutting-edge and exclusive content containing technical details and discussions. The only periodical of its kind, M.E. is circulated to members and nonmember paid subscribers. The magazine is truly international in scope, with readers in over 90 nations. The journal’s history and archive reaches back to the earliest formative days of the Society.