基于改进二叉乌鸦搜索算法的皮肤致敏电位QSAR分类模型

IF 0.6 Q4 STATISTICS & PROBABILITY Electronic Journal of Applied Statistical Analysis Pub Date : 2020-02-05 DOI:10.1285/I20705948V13N1P86
G. Abdallh, Z. Algamal
{"title":"基于改进二叉乌鸦搜索算法的皮肤致敏电位QSAR分类模型","authors":"G. Abdallh, Z. Algamal","doi":"10.1285/I20705948V13N1P86","DOIUrl":null,"url":null,"abstract":"Classifying of skin sensitization using the quantitative structure-activity relationship (QSAR) model is important. Applying descriptor selection is essential to improve the performance of the classification task. Recently, a binary crow search algorithm (BCSA) was proposed, which has been successfully applied to solve variable selection. In this work, a new time-varying transfer function is proposed to improve the exploration and exploitation capability of the BCSA in selecting the most relevant descriptors in QSAR classification model with high classification accuracy and short computing time. The results demonstrated that the proposed method is reliable and can reasonably separate the compounds according to sensitizers or non-sensitizers with high classification accuracy.","PeriodicalId":44770,"journal":{"name":"Electronic Journal of Applied Statistical Analysis","volume":"13 1","pages":"86-95"},"PeriodicalIF":0.6000,"publicationDate":"2020-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A QSAR classification model of skin sensitization potential based on improving binary crow search algorithm\",\"authors\":\"G. Abdallh, Z. Algamal\",\"doi\":\"10.1285/I20705948V13N1P86\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classifying of skin sensitization using the quantitative structure-activity relationship (QSAR) model is important. Applying descriptor selection is essential to improve the performance of the classification task. Recently, a binary crow search algorithm (BCSA) was proposed, which has been successfully applied to solve variable selection. In this work, a new time-varying transfer function is proposed to improve the exploration and exploitation capability of the BCSA in selecting the most relevant descriptors in QSAR classification model with high classification accuracy and short computing time. The results demonstrated that the proposed method is reliable and can reasonably separate the compounds according to sensitizers or non-sensitizers with high classification accuracy.\",\"PeriodicalId\":44770,\"journal\":{\"name\":\"Electronic Journal of Applied Statistical Analysis\",\"volume\":\"13 1\",\"pages\":\"86-95\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Applied Statistical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1285/I20705948V13N1P86\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Applied Statistical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1285/I20705948V13N1P86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 9

摘要

使用定量构效关系(QSAR)模型对皮肤致敏进行分类是重要的。应用描述符选择对于提高分类任务的性能至关重要。最近,提出了一种二进制乌鸦搜索算法(BCSA),该算法已成功应用于变量选择问题。在这项工作中,提出了一种新的时变传递函数,以提高BCSA在QSAR分类模型中选择最相关描述符的探索和开发能力,具有高分类精度和短计算时间。结果表明,该方法是可靠的,可以根据敏化剂或非敏化剂对化合物进行合理的分离,具有较高的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A QSAR classification model of skin sensitization potential based on improving binary crow search algorithm
Classifying of skin sensitization using the quantitative structure-activity relationship (QSAR) model is important. Applying descriptor selection is essential to improve the performance of the classification task. Recently, a binary crow search algorithm (BCSA) was proposed, which has been successfully applied to solve variable selection. In this work, a new time-varying transfer function is proposed to improve the exploration and exploitation capability of the BCSA in selecting the most relevant descriptors in QSAR classification model with high classification accuracy and short computing time. The results demonstrated that the proposed method is reliable and can reasonably separate the compounds according to sensitizers or non-sensitizers with high classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
14.30%
发文量
0
期刊最新文献
Exploratory Data Analysis of Accuracy of US Weather Forecastes Extended asymmetry model based on logit transformation and decomposition of symmetry for square contingency tables with ordered categories Generalized Quasi Lindley Distribution: Theoretical Properties, Estimation Methods, and Applications Almost unbiased ridge estimator in the count data regression models Does the elimination of work flexibility contribute to reducing wage inequality? Empirical evidence from Ecuador
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1