Qi Wang, Yan He, W. Sheng, Senlin Zhang, Meiqin Liu, Badong Chen
{"title":"面向老年人的主动学习用于家庭服务机器人感知智能的自适应","authors":"Qi Wang, Yan He, W. Sheng, Senlin Zhang, Meiqin Liu, Badong Chen","doi":"10.1145/3607871","DOIUrl":null,"url":null,"abstract":"Active learning is a special case of machine learning in which a learning algorithm can interactively query a user to label new data points with the desired outputs. In robotics, active learning allows a robot to adapt its perception intelligence to a new environment with users’ help. This paper presents a new active learning method for elderly care robots to select data that is not only useful for learning but also easy for the elderly user to label. First, a series of image properties related to annotation difficulty are determined based on existing medical researches in human vision in elderly population. Based on that, a user study is conducted to determine the ground truth of annotation difficulty of images for the older adults. Second, a robust annotation difficulty predictor is developed using the results of the user study, and the difficulty prediction of an image is combined with three other active learning criteria to form an annotation difficulty-aware active learning metric, which facilitates the query data selection as the robot adapts its perception intelligence in a home environment. Third, we present an ablation study of the proposed active learning method through a simulation experiment. The experimental results validate the advantages of the proposed method.","PeriodicalId":50910,"journal":{"name":"ACM Transactions on Sensor Networks","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elder-oriented Active Learning for Adaptation of Perception Intelligence in Home Service Robots\",\"authors\":\"Qi Wang, Yan He, W. Sheng, Senlin Zhang, Meiqin Liu, Badong Chen\",\"doi\":\"10.1145/3607871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Active learning is a special case of machine learning in which a learning algorithm can interactively query a user to label new data points with the desired outputs. In robotics, active learning allows a robot to adapt its perception intelligence to a new environment with users’ help. This paper presents a new active learning method for elderly care robots to select data that is not only useful for learning but also easy for the elderly user to label. First, a series of image properties related to annotation difficulty are determined based on existing medical researches in human vision in elderly population. Based on that, a user study is conducted to determine the ground truth of annotation difficulty of images for the older adults. Second, a robust annotation difficulty predictor is developed using the results of the user study, and the difficulty prediction of an image is combined with three other active learning criteria to form an annotation difficulty-aware active learning metric, which facilitates the query data selection as the robot adapts its perception intelligence in a home environment. Third, we present an ablation study of the proposed active learning method through a simulation experiment. The experimental results validate the advantages of the proposed method.\",\"PeriodicalId\":50910,\"journal\":{\"name\":\"ACM Transactions on Sensor Networks\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Sensor Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3607871\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3607871","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Elder-oriented Active Learning for Adaptation of Perception Intelligence in Home Service Robots
Active learning is a special case of machine learning in which a learning algorithm can interactively query a user to label new data points with the desired outputs. In robotics, active learning allows a robot to adapt its perception intelligence to a new environment with users’ help. This paper presents a new active learning method for elderly care robots to select data that is not only useful for learning but also easy for the elderly user to label. First, a series of image properties related to annotation difficulty are determined based on existing medical researches in human vision in elderly population. Based on that, a user study is conducted to determine the ground truth of annotation difficulty of images for the older adults. Second, a robust annotation difficulty predictor is developed using the results of the user study, and the difficulty prediction of an image is combined with three other active learning criteria to form an annotation difficulty-aware active learning metric, which facilitates the query data selection as the robot adapts its perception intelligence in a home environment. Third, we present an ablation study of the proposed active learning method through a simulation experiment. The experimental results validate the advantages of the proposed method.
期刊介绍:
ACM Transactions on Sensor Networks (TOSN) is a central publication by the ACM in the interdisciplinary area of sensor networks spanning a broad discipline from signal processing, networking and protocols, embedded systems, information management, to distributed algorithms. It covers research contributions that introduce new concepts, techniques, analyses, or architectures, as well as applied contributions that report on development of new tools and systems or experiences and experiments with high-impact, innovative applications. The Transactions places special attention on contributions to systemic approaches to sensor networks as well as fundamental contributions.