LQFP C90FG晶圆工艺器件在铜线键合过程中层间介电裂纹的改进

IF 0.7 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Microelectronics International Pub Date : 2021-11-23 DOI:10.1108/mi-07-2021-0059
Xiuqiang Wu, D. Ye, Hanmin Zhang, Li Song, L. Guo
{"title":"LQFP C90FG晶圆工艺器件在铜线键合过程中层间介电裂纹的改进","authors":"Xiuqiang Wu, D. Ye, Hanmin Zhang, Li Song, L. Guo","doi":"10.1108/mi-07-2021-0059","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis paper aims to investigate the root causes of and implement the improvements for the inter layer dielectric (ILD) crack for LQFP C90FG (CMOS90 Floating Gate) wafer technology devices in copper wire bonding process.\n\n\nDesign/methodology/approach\nFailure analysis was conducted including cratering, scanning electron microscopy inspection and focus ion beam cross-section analysis, which showed ILD crack. Root cause investigation of ILD crack rate sudden jumping was carried out with cause-and-effect analysis, which revealed the root cause is shallower lead frame down-set. ILD crack mechanism deep-dive on ILD crack due to shallower lead frame down-set, which revealed the mechanism is lead frame flag floating on heat insert. Further investigation and energy dispersive X-ray analysis found the Cu particles on heat insert is another factor that can result in lead frame flag floating.\n\n\nFindings\nLead frame flag floating on heat insert caused by shallower lead frame down-set or foreign matter on heat insert is a critical factor of ILD crack that has never been revealed before. Weak wafer structure strength caused by thinner wafer passivation1 thickness and sharp corner at Metal Trench (compared with the benchmarking fab) are other factors that can impact ILD crack.\n\n\nOriginality/value\nFor ILD crack improvement in copper wire bonding, besides the obvious factors such as wafer structure and wire bonding parameters, also should take other factors into consideration including lead frame flag floating on heat insert and heat insert maintenance.\n","PeriodicalId":49817,"journal":{"name":"Microelectronics International","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improvement of inter layer dielectric crack for LQFP C90FG wafer technology devices in copper wire bonding process\",\"authors\":\"Xiuqiang Wu, D. Ye, Hanmin Zhang, Li Song, L. Guo\",\"doi\":\"10.1108/mi-07-2021-0059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThis paper aims to investigate the root causes of and implement the improvements for the inter layer dielectric (ILD) crack for LQFP C90FG (CMOS90 Floating Gate) wafer technology devices in copper wire bonding process.\\n\\n\\nDesign/methodology/approach\\nFailure analysis was conducted including cratering, scanning electron microscopy inspection and focus ion beam cross-section analysis, which showed ILD crack. Root cause investigation of ILD crack rate sudden jumping was carried out with cause-and-effect analysis, which revealed the root cause is shallower lead frame down-set. ILD crack mechanism deep-dive on ILD crack due to shallower lead frame down-set, which revealed the mechanism is lead frame flag floating on heat insert. Further investigation and energy dispersive X-ray analysis found the Cu particles on heat insert is another factor that can result in lead frame flag floating.\\n\\n\\nFindings\\nLead frame flag floating on heat insert caused by shallower lead frame down-set or foreign matter on heat insert is a critical factor of ILD crack that has never been revealed before. Weak wafer structure strength caused by thinner wafer passivation1 thickness and sharp corner at Metal Trench (compared with the benchmarking fab) are other factors that can impact ILD crack.\\n\\n\\nOriginality/value\\nFor ILD crack improvement in copper wire bonding, besides the obvious factors such as wafer structure and wire bonding parameters, also should take other factors into consideration including lead frame flag floating on heat insert and heat insert maintenance.\\n\",\"PeriodicalId\":49817,\"journal\":{\"name\":\"Microelectronics International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronics International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/mi-07-2021-0059\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/mi-07-2021-0059","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

摘要

目的研究LQFP C90FG (CMOS90浮栅)晶圆工艺器件在铜线键合过程中产生层间介电(ILD)裂纹的根本原因并实施改进措施。设计/方法/方法进行了失效分析,包括凹坑、扫描电镜检查和聚焦离子束截面分析,结果显示为ILD裂纹。通过因果分析,对ILD裂纹率突然跳变的根本原因进行了调查,发现其根本原因是引线架下陷较浅。由于引线框架下陷较浅,引线框架下陷较深,导致引线框架下陷较深,表明引线框架标志在热嵌件上浮动。进一步的调查和能量色散x射线分析发现,热插片上的Cu颗粒是导致引线框架旗漂浮的另一个因素。发现引线架下陷较浅或引线架上有异物引起的引线架旗在热嵌件上的浮动是造成ILD裂纹的关键因素,这是以往从未发现过的。与基准晶圆厂相比,晶圆钝化厚度较薄导致的晶圆结构强度较弱以及Metal Trench的尖角是影响ILD裂纹的其他因素。原创性/价值对于铜线焊接的ILD裂纹改善,除了考虑晶片结构、焊线参数等明显因素外,还应考虑热插片上引线框旗的浮动、热插片的维护等因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improvement of inter layer dielectric crack for LQFP C90FG wafer technology devices in copper wire bonding process
Purpose This paper aims to investigate the root causes of and implement the improvements for the inter layer dielectric (ILD) crack for LQFP C90FG (CMOS90 Floating Gate) wafer technology devices in copper wire bonding process. Design/methodology/approach Failure analysis was conducted including cratering, scanning electron microscopy inspection and focus ion beam cross-section analysis, which showed ILD crack. Root cause investigation of ILD crack rate sudden jumping was carried out with cause-and-effect analysis, which revealed the root cause is shallower lead frame down-set. ILD crack mechanism deep-dive on ILD crack due to shallower lead frame down-set, which revealed the mechanism is lead frame flag floating on heat insert. Further investigation and energy dispersive X-ray analysis found the Cu particles on heat insert is another factor that can result in lead frame flag floating. Findings Lead frame flag floating on heat insert caused by shallower lead frame down-set or foreign matter on heat insert is a critical factor of ILD crack that has never been revealed before. Weak wafer structure strength caused by thinner wafer passivation1 thickness and sharp corner at Metal Trench (compared with the benchmarking fab) are other factors that can impact ILD crack. Originality/value For ILD crack improvement in copper wire bonding, besides the obvious factors such as wafer structure and wire bonding parameters, also should take other factors into consideration including lead frame flag floating on heat insert and heat insert maintenance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microelectronics International
Microelectronics International 工程技术-材料科学:综合
CiteScore
1.90
自引率
9.10%
发文量
28
审稿时长
>12 weeks
期刊介绍: Microelectronics International provides an authoritative, international and independent forum for the critical evaluation and dissemination of research and development, applications, processes and current practices relating to advanced packaging, micro-circuit engineering, interconnection, semiconductor technology and systems engineering. It represents a current, comprehensive and practical information tool. The Editor, Dr John Atkinson, welcomes contributions to the journal including technical papers, research papers, case studies and review papers for publication. Please view the Author Guidelines for further details. Microelectronics International comprises a multi-disciplinary study of the key technologies and related issues associated with the design, manufacture, assembly and various applications of miniaturized electronic devices and advanced packages. Among the broad range of topics covered are: • Advanced packaging • Ceramics • Chip attachment • Chip on board (COB) • Chip scale packaging • Flexible substrates • MEMS • Micro-circuit technology • Microelectronic materials • Multichip modules (MCMs) • Organic/polymer electronics • Printed electronics • Semiconductor technology • Solid state sensors • Thermal management • Thick/thin film technology • Wafer scale processing.
期刊最新文献
Study of the electronic transport performance of ZnO-SiO2 film: the construction of grain boundary barrier 3-pass and 5-pass laser grooving & die strength characterization for reinforced internal low-k 55nm node wafer structure via heat-treatment process Deformation and crack growth in multilayered ceramic capacitor during thermal reflow process: numerical and experimental investigation Simplifying finite elements analysis of four-point bending tests for flip chip microcomponents Quasi-elliptic band pass filter using resonators based on coupling theory for ultra-wide band applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1