利用贫合金粉末和真空烧结制造阀桥件

Q4 Materials Science Powder Metallurgy Progress Pub Date : 2018-06-01 DOI:10.1515/pmp-2018-0004
R. Shvab, M. V. Sundaram, H. Karlsson, D. Chasoglou, S. Berg, E. Hryha, L. Nyborg
{"title":"利用贫合金粉末和真空烧结制造阀桥件","authors":"R. Shvab, M. V. Sundaram, H. Karlsson, D. Chasoglou, S. Berg, E. Hryha, L. Nyborg","doi":"10.1515/pmp-2018-0004","DOIUrl":null,"url":null,"abstract":"Abstract Increasing the application area of powder metallurgy (PM) steels for manufacturing of high-performance structural components results in material saving, reduction in energy consumption, etc. In this study, feasibility of the manufacturing of valve bridge component for heavy duty engine utilizing lean alloyed powders and novel vacuum sintering approach, followed by low pressure carburizing, is studied. Three low alloyed steel powders were processed by conventional uniaxial pressing and sintering at 1120 and 1250°C in industrial vacuum furnace. The components were tested under high cycle fatigue testing, simulating real conditions of operation. Fatigue properties did not show significant dependence on the sintering temperature and were comparable to currently used reference cast material. Fracture surfaces of broken samples were analyzed to detect crack initiations and fracture mechanisms as well as quality of sintering. Results showed preferentially ductile failure, well developed sintering necks and clean pore surfaces, indicating good sintering. Tested material in combination with novel vacuum sintering process show to be an attractive alternative for manufacturing of this type of components for heavy duty engine applications.","PeriodicalId":52175,"journal":{"name":"Powder Metallurgy Progress","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Manufacturing of Valve Bridge Component Utilizing Lean Alloyed Powders and Vacuum Sintering\",\"authors\":\"R. Shvab, M. V. Sundaram, H. Karlsson, D. Chasoglou, S. Berg, E. Hryha, L. Nyborg\",\"doi\":\"10.1515/pmp-2018-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Increasing the application area of powder metallurgy (PM) steels for manufacturing of high-performance structural components results in material saving, reduction in energy consumption, etc. In this study, feasibility of the manufacturing of valve bridge component for heavy duty engine utilizing lean alloyed powders and novel vacuum sintering approach, followed by low pressure carburizing, is studied. Three low alloyed steel powders were processed by conventional uniaxial pressing and sintering at 1120 and 1250°C in industrial vacuum furnace. The components were tested under high cycle fatigue testing, simulating real conditions of operation. Fatigue properties did not show significant dependence on the sintering temperature and were comparable to currently used reference cast material. Fracture surfaces of broken samples were analyzed to detect crack initiations and fracture mechanisms as well as quality of sintering. Results showed preferentially ductile failure, well developed sintering necks and clean pore surfaces, indicating good sintering. Tested material in combination with novel vacuum sintering process show to be an attractive alternative for manufacturing of this type of components for heavy duty engine applications.\",\"PeriodicalId\":52175,\"journal\":{\"name\":\"Powder Metallurgy Progress\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Metallurgy Progress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/pmp-2018-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy Progress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/pmp-2018-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 3

摘要

摘要增加粉末冶金(PM)钢在制造高性能结构部件方面的应用领域,可以节省材料、降低能耗等。在本研究中,利用贫合金粉末和新型真空烧结方法制造重型发动机气门桥部件的可行性,然后进行低压渗碳。采用工业真空炉在1120℃和1250℃下进行常规单轴压制和烧结,制备了三种低合金钢粉末。这些部件在高周疲劳试验下进行了测试,模拟了实际操作条件。疲劳性能没有显示出对烧结温度的显著依赖性,并且与目前使用的参考铸造材料相当。对断裂样品的断口进行了分析,以检测裂纹的萌生、断裂机制以及烧结质量。结果表明,韧性破坏优先,烧结颈发育良好,孔隙表面清洁,表明烧结良好。经测试的材料与新型真空烧结工艺相结合,证明是制造用于重型发动机应用的此类部件的一种有吸引力的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Manufacturing of Valve Bridge Component Utilizing Lean Alloyed Powders and Vacuum Sintering
Abstract Increasing the application area of powder metallurgy (PM) steels for manufacturing of high-performance structural components results in material saving, reduction in energy consumption, etc. In this study, feasibility of the manufacturing of valve bridge component for heavy duty engine utilizing lean alloyed powders and novel vacuum sintering approach, followed by low pressure carburizing, is studied. Three low alloyed steel powders were processed by conventional uniaxial pressing and sintering at 1120 and 1250°C in industrial vacuum furnace. The components were tested under high cycle fatigue testing, simulating real conditions of operation. Fatigue properties did not show significant dependence on the sintering temperature and were comparable to currently used reference cast material. Fracture surfaces of broken samples were analyzed to detect crack initiations and fracture mechanisms as well as quality of sintering. Results showed preferentially ductile failure, well developed sintering necks and clean pore surfaces, indicating good sintering. Tested material in combination with novel vacuum sintering process show to be an attractive alternative for manufacturing of this type of components for heavy duty engine applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Powder Metallurgy Progress
Powder Metallurgy Progress Materials Science-Metals and Alloys
CiteScore
1.00
自引率
0.00%
发文量
0
期刊最新文献
Fracture Toughness of Cement Paste Assessed with Micro-Scratch and Acoustic Emission Evaluation of Residual Stress and Tensile Properties of Railway Axle Using Instrumented Indentation Method Announcements: Professor RNDr. Ján Dusza, DrSc – 70 years jubeeleum Effect of Machining on Mechanical Properties of Borosilicate Glasses Micromechanical Properties of Reactive HiTUS TiNbVTaZrHf–N Coatings on Different Substrates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1