{"title":"铬镍铁合金与奥氏体不锈钢异种焊接研究进展","authors":"N. Kumar, C. Pandey, P. kumar","doi":"10.1115/1.4055329","DOIUrl":null,"url":null,"abstract":"\n In this review paper, dissimilar welding between Inconel and austenitic stainless steel along with its application has been outlined for high-temperature applications. The mechanical and microstructural behavior of this dissimilar joint has been summarized thoroughly in this article. Dissimilar welding of Inconel alloys and stainless steel (SS) has massive demand in high temperature and high corrosive applications industries. Austenitic stainless steel contains 16-26% of Cr and 6-12% of Ni elements showing FCC structures have good weldability and high corrosion resistance. Austenitic stainless steel such as 304, 316l, 304H, etc., containing austenite microstructure used in high-temperature applications like power plants, heat exchangers, heating elements, aircraft, and others. In addition, Ni-based Inconel alloys show high-temperature strength and corrosion resistance and are frequently used in high-temperature applications. Ni-based Inconel 718 alloy possesses excellent strength, corrosion resistance and creep resistance at high temperatures are frequently used in combustion chambers, power plants and turbine blades ap/plications. Inconel alloyed by elements Ti, Al and Nb attain strength by forming phases such as ?/-Ni3(-Ti, Al), ?//-Ni3Nb, and carbides such as MC and M23C6, nitrides, laves phase. The GTA dissimilar welding between expensive Inconel and cheaper stainless steel is successfully used in nuclear power plants. The dissimilarity in melting point, chemical composition, thermal, mechanical, and other properties between these materials make welding challengeable. This review paper focused on problems related to dissimilar welding like forming unmixed zone, elemental segregation, formation of laves phase, sensitization, microfissuring, and solidification cracking.","PeriodicalId":50080,"journal":{"name":"Journal of Pressure Vessel Technology-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Dissimilar Welding of Inconel Alloys with Austenitic Stainless-Steel: A Review\",\"authors\":\"N. Kumar, C. Pandey, P. kumar\",\"doi\":\"10.1115/1.4055329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this review paper, dissimilar welding between Inconel and austenitic stainless steel along with its application has been outlined for high-temperature applications. The mechanical and microstructural behavior of this dissimilar joint has been summarized thoroughly in this article. Dissimilar welding of Inconel alloys and stainless steel (SS) has massive demand in high temperature and high corrosive applications industries. Austenitic stainless steel contains 16-26% of Cr and 6-12% of Ni elements showing FCC structures have good weldability and high corrosion resistance. Austenitic stainless steel such as 304, 316l, 304H, etc., containing austenite microstructure used in high-temperature applications like power plants, heat exchangers, heating elements, aircraft, and others. In addition, Ni-based Inconel alloys show high-temperature strength and corrosion resistance and are frequently used in high-temperature applications. Ni-based Inconel 718 alloy possesses excellent strength, corrosion resistance and creep resistance at high temperatures are frequently used in combustion chambers, power plants and turbine blades ap/plications. Inconel alloyed by elements Ti, Al and Nb attain strength by forming phases such as ?/-Ni3(-Ti, Al), ?//-Ni3Nb, and carbides such as MC and M23C6, nitrides, laves phase. The GTA dissimilar welding between expensive Inconel and cheaper stainless steel is successfully used in nuclear power plants. The dissimilarity in melting point, chemical composition, thermal, mechanical, and other properties between these materials make welding challengeable. This review paper focused on problems related to dissimilar welding like forming unmixed zone, elemental segregation, formation of laves phase, sensitization, microfissuring, and solidification cracking.\",\"PeriodicalId\":50080,\"journal\":{\"name\":\"Journal of Pressure Vessel Technology-Transactions of the Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pressure Vessel Technology-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4055329\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pressure Vessel Technology-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4055329","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Dissimilar Welding of Inconel Alloys with Austenitic Stainless-Steel: A Review
In this review paper, dissimilar welding between Inconel and austenitic stainless steel along with its application has been outlined for high-temperature applications. The mechanical and microstructural behavior of this dissimilar joint has been summarized thoroughly in this article. Dissimilar welding of Inconel alloys and stainless steel (SS) has massive demand in high temperature and high corrosive applications industries. Austenitic stainless steel contains 16-26% of Cr and 6-12% of Ni elements showing FCC structures have good weldability and high corrosion resistance. Austenitic stainless steel such as 304, 316l, 304H, etc., containing austenite microstructure used in high-temperature applications like power plants, heat exchangers, heating elements, aircraft, and others. In addition, Ni-based Inconel alloys show high-temperature strength and corrosion resistance and are frequently used in high-temperature applications. Ni-based Inconel 718 alloy possesses excellent strength, corrosion resistance and creep resistance at high temperatures are frequently used in combustion chambers, power plants and turbine blades ap/plications. Inconel alloyed by elements Ti, Al and Nb attain strength by forming phases such as ?/-Ni3(-Ti, Al), ?//-Ni3Nb, and carbides such as MC and M23C6, nitrides, laves phase. The GTA dissimilar welding between expensive Inconel and cheaper stainless steel is successfully used in nuclear power plants. The dissimilarity in melting point, chemical composition, thermal, mechanical, and other properties between these materials make welding challengeable. This review paper focused on problems related to dissimilar welding like forming unmixed zone, elemental segregation, formation of laves phase, sensitization, microfissuring, and solidification cracking.
期刊介绍:
The Journal of Pressure Vessel Technology is the premier publication for the highest-quality research and interpretive reports on the design, analysis, materials, fabrication, construction, inspection, operation, and failure prevention of pressure vessels, piping, pipelines, power and heating boilers, heat exchangers, reaction vessels, pumps, valves, and other pressure and temperature-bearing components, as well as the nondestructive evaluation of critical components in mechanical engineering applications. Not only does the Journal cover all topics dealing with the design and analysis of pressure vessels, piping, and components, but it also contains discussions of their related codes and standards.
Applicable pressure technology areas of interest include: Dynamic and seismic analysis; Equipment qualification; Fabrication; Welding processes and integrity; Operation of vessels and piping; Fatigue and fracture prediction; Finite and boundary element methods; Fluid-structure interaction; High pressure engineering; Elevated temperature analysis and design; Inelastic analysis; Life extension; Lifeline earthquake engineering; PVP materials and their property databases; NDE; safety and reliability; Verification and qualification of software.