{"title":"Shikimate激酶动力学的分子力学探索","authors":"P. Ojeda-May","doi":"10.3390/biophysica2030020","DOIUrl":null,"url":null,"abstract":"Shikimate kinase (SK) enzyme is a suitable target for antimicrobial drugs as it is present in pathogenic microorganisms and absent in mammals. A complete understanding of the functioning of this enzyme can unveil novel methods to inactivate it. To do this, a clear understanding of SK performance is needed. Previously, the chemical step of SK was studied in detail, but a study of longer-term scale simulations is still missing. In the present work, we performed molecular dynamics (MD) simulations in the μs time scale that allowed us to explore further regions of the SK energy landscape than previously. Simulations were conducted on the wild-type (WT) enzyme and the R116A and R116K mutants. We analyzed the dynamics of the enzymes through standard MD tools, and we found that the global motions in the mutants were perturbed. These motions can be linked to the observed undetectable binding affinity of the WT enzyme and the R116A and R116K mutants.","PeriodicalId":72401,"journal":{"name":"Biophysica","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Exploring the Dynamics of Shikimate Kinase through Molecular Mechanics\",\"authors\":\"P. Ojeda-May\",\"doi\":\"10.3390/biophysica2030020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shikimate kinase (SK) enzyme is a suitable target for antimicrobial drugs as it is present in pathogenic microorganisms and absent in mammals. A complete understanding of the functioning of this enzyme can unveil novel methods to inactivate it. To do this, a clear understanding of SK performance is needed. Previously, the chemical step of SK was studied in detail, but a study of longer-term scale simulations is still missing. In the present work, we performed molecular dynamics (MD) simulations in the μs time scale that allowed us to explore further regions of the SK energy landscape than previously. Simulations were conducted on the wild-type (WT) enzyme and the R116A and R116K mutants. We analyzed the dynamics of the enzymes through standard MD tools, and we found that the global motions in the mutants were perturbed. These motions can be linked to the observed undetectable binding affinity of the WT enzyme and the R116A and R116K mutants.\",\"PeriodicalId\":72401,\"journal\":{\"name\":\"Biophysica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/biophysica2030020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biophysica2030020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploring the Dynamics of Shikimate Kinase through Molecular Mechanics
Shikimate kinase (SK) enzyme is a suitable target for antimicrobial drugs as it is present in pathogenic microorganisms and absent in mammals. A complete understanding of the functioning of this enzyme can unveil novel methods to inactivate it. To do this, a clear understanding of SK performance is needed. Previously, the chemical step of SK was studied in detail, but a study of longer-term scale simulations is still missing. In the present work, we performed molecular dynamics (MD) simulations in the μs time scale that allowed us to explore further regions of the SK energy landscape than previously. Simulations were conducted on the wild-type (WT) enzyme and the R116A and R116K mutants. We analyzed the dynamics of the enzymes through standard MD tools, and we found that the global motions in the mutants were perturbed. These motions can be linked to the observed undetectable binding affinity of the WT enzyme and the R116A and R116K mutants.