水溶性非离子聚乙二醇化卟啉:基础科学和应用的多用途染料

IF 8.6 2区 化学 Q1 Chemistry Topics in Current Chemistry Pub Date : 2021-08-11 DOI:10.1007/s41061-021-00348-4
Valentina Villari, Norberto Micali, Angelo Nicosia, Placido Mineo
{"title":"水溶性非离子聚乙二醇化卟啉:基础科学和应用的多用途染料","authors":"Valentina Villari,&nbsp;Norberto Micali,&nbsp;Angelo Nicosia,&nbsp;Placido Mineo","doi":"10.1007/s41061-021-00348-4","DOIUrl":null,"url":null,"abstract":"<div><p>This review arises from the need to rationalize the huge amount of information on the structural and spectroscopic properties of a peculiar class of porphyrin derivatives—the non-ionic PEGylated porphyrins—collected during almost two decades of research. The lack of charged groups in the molecular architecture of these porphyrin derivatives is the leitmotif of the work and plays an outstanding role in highlighting those interactions between porphyrins, or between porphyrins and target molecules (e.g., hydrophobic-, hydrogen bond related-, and coordination-interactions, to name just a few) that are often masked by stronger electrostatic contributions. In addition, it is exactly these weaker interactions between porphyrins that make the aggregated forms more prone to couple efficiently with external perturbative fields like weak hydrodynamic vortexes or temperature gradients. In the absence of charge, solubility in water is very often achieved by covalent functionalization of the porphyrin ring with polyethylene glycol chains. Various modifications, including of chain length or the number of chains, the presence of a metal atom in the porphyrin core, or having two or more porphyrin rings in the molecular architecture, result in a wide range of properties. These encompass self-assembly with different aggregate morphology, molecular recognition of biomolecules, and different photophysical responses, which can be translated into numerous promising applications in the sensing and biomedical field, based on turn-on/turn-off fluorescence and on photogeneration of radical species.</p><h3>Graphic Abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"379 5","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2021-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41061-021-00348-4","citationCount":"2","resultStr":"{\"title\":\"Water-Soluble Non-Ionic PEGylated Porphyrins: A Versatile Category of Dyes for Basic Science and Applications\",\"authors\":\"Valentina Villari,&nbsp;Norberto Micali,&nbsp;Angelo Nicosia,&nbsp;Placido Mineo\",\"doi\":\"10.1007/s41061-021-00348-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This review arises from the need to rationalize the huge amount of information on the structural and spectroscopic properties of a peculiar class of porphyrin derivatives—the non-ionic PEGylated porphyrins—collected during almost two decades of research. The lack of charged groups in the molecular architecture of these porphyrin derivatives is the leitmotif of the work and plays an outstanding role in highlighting those interactions between porphyrins, or between porphyrins and target molecules (e.g., hydrophobic-, hydrogen bond related-, and coordination-interactions, to name just a few) that are often masked by stronger electrostatic contributions. In addition, it is exactly these weaker interactions between porphyrins that make the aggregated forms more prone to couple efficiently with external perturbative fields like weak hydrodynamic vortexes or temperature gradients. In the absence of charge, solubility in water is very often achieved by covalent functionalization of the porphyrin ring with polyethylene glycol chains. Various modifications, including of chain length or the number of chains, the presence of a metal atom in the porphyrin core, or having two or more porphyrin rings in the molecular architecture, result in a wide range of properties. These encompass self-assembly with different aggregate morphology, molecular recognition of biomolecules, and different photophysical responses, which can be translated into numerous promising applications in the sensing and biomedical field, based on turn-on/turn-off fluorescence and on photogeneration of radical species.</p><h3>Graphic Abstract</h3>\\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\\n </div>\",\"PeriodicalId\":802,\"journal\":{\"name\":\"Topics in Current Chemistry\",\"volume\":\"379 5\",\"pages\":\"\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2021-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s41061-021-00348-4\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topics in Current Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41061-021-00348-4\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Current Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41061-021-00348-4","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 2

摘要

在近二十年的研究中,对一类特殊的卟啉衍生物——非离子型聚乙二醇化卟啉的结构和光谱特性进行了大量的研究,为了使这些研究合理化,本文进行了综述。在这些卟啉衍生物的分子结构中缺乏带电基团是这项工作的主题,并且在突出卟啉之间或卟啉与靶分子之间的相互作用(例如,疏水-,氢键相关-和配位-相互作用,仅举几例)方面起着突出作用,这些相互作用通常被更强的静电贡献所掩盖。此外,正是卟啉之间的这些较弱的相互作用使得聚合形式更容易与外部扰动场(如弱流体动力涡或温度梯度)有效耦合。在不带电荷的情况下,卟啉环与聚乙二醇链的共价官能化通常能在水中溶解。各种各样的修饰,包括链长或链数,在卟啉核心中存在金属原子,或在分子结构中有两个或更多的卟啉环,都会产生各种各样的性质。这些包括具有不同聚集形态的自组装,生物分子的分子识别和不同的光物理反应,这些可以转化为传感和生物医学领域的许多有前途的应用,基于开启/关闭荧光和自由基的光产生。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Water-Soluble Non-Ionic PEGylated Porphyrins: A Versatile Category of Dyes for Basic Science and Applications

This review arises from the need to rationalize the huge amount of information on the structural and spectroscopic properties of a peculiar class of porphyrin derivatives—the non-ionic PEGylated porphyrins—collected during almost two decades of research. The lack of charged groups in the molecular architecture of these porphyrin derivatives is the leitmotif of the work and plays an outstanding role in highlighting those interactions between porphyrins, or between porphyrins and target molecules (e.g., hydrophobic-, hydrogen bond related-, and coordination-interactions, to name just a few) that are often masked by stronger electrostatic contributions. In addition, it is exactly these weaker interactions between porphyrins that make the aggregated forms more prone to couple efficiently with external perturbative fields like weak hydrodynamic vortexes or temperature gradients. In the absence of charge, solubility in water is very often achieved by covalent functionalization of the porphyrin ring with polyethylene glycol chains. Various modifications, including of chain length or the number of chains, the presence of a metal atom in the porphyrin core, or having two or more porphyrin rings in the molecular architecture, result in a wide range of properties. These encompass self-assembly with different aggregate morphology, molecular recognition of biomolecules, and different photophysical responses, which can be translated into numerous promising applications in the sensing and biomedical field, based on turn-on/turn-off fluorescence and on photogeneration of radical species.

Graphic Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Topics in Current Chemistry
Topics in Current Chemistry 化学-化学综合
CiteScore
11.70
自引率
1.20%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Topics in Current Chemistry provides in-depth analyses and forward-thinking perspectives on the latest advancements in chemical research. This renowned journal encompasses various domains within chemical science and their intersections with biology, medicine, physics, and materials science. Each collection within the journal aims to offer a comprehensive understanding, accessible to both academic and industrial readers, of emerging research in an area that captivates a broader scientific community. In essence, Topics in Current Chemistry illuminates cutting-edge chemical research, fosters interdisciplinary collaboration, and facilitates knowledge-sharing among diverse scientific audiences.
期刊最新文献
Recent Advances in C–O Bond Cleavage of Aryl, Vinyl, and Benzylic Ethers Porous Polymer Sorbents in Micro Solid Phase Extraction: Applications, Advantages, and Challenges A Comprehensive Exploration of the Synergistic Relationship between DMSO and Peroxide in Organic Synthesis Schiff Base-Based Molybdenum Complexes as Green Catalyst in the Epoxidation Reaction: A Minireview Recent Advances in the Synthesis of Acyclic Nucleosides and Their Therapeutic Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1