Michelle Gros, David R. Zilkey, Katherine Griffiths, Jennifer Pham, P. MacKeigan, Z. Taranu, Candice Aulard, Alexandre Baud, Rebecca E. Garner, H. Ghanbari, M. Lachapelle, Marie‐Eve Monchamp, Cynthia H. Paquette, D. Antoniades, P. Francus, J. Smol, I. Gregory‐Eaves
{"title":"加拿大北部地区的长期环境变化:从湖泊沉积物档案中综合时间趋势,为未来的可持续性提供信息","authors":"Michelle Gros, David R. Zilkey, Katherine Griffiths, Jennifer Pham, P. MacKeigan, Z. Taranu, Candice Aulard, Alexandre Baud, Rebecca E. Garner, H. Ghanbari, M. Lachapelle, Marie‐Eve Monchamp, Cynthia H. Paquette, D. Antoniades, P. Francus, J. Smol, I. Gregory‐Eaves","doi":"10.1139/er-2023-0006","DOIUrl":null,"url":null,"abstract":"Covering 55% of Canada’s total surface area and stretching from coast to coast to coast, the Canadian boreal zone is crucial to the nation’s economic and ecological integrity. Although often viewed as relatively underdeveloped, it is vulnerable to numerous stressors such as mining, forestry, and anthropogenic climate change. Natural archives preserved in lake sediments can provide key insights by quantifying pre-disturbance conditions (pre-1850 CE) and the nature, magnitude, direction, and speed of environmental change induced by anthropogenic stressors over the past ~150 years. Here, we paired a review of paleolimnological literature of the Canadian boreal zone with analyses of published sediment core data to highlight the effects of climate change, catchment disturbances, and atmospheric deposition on boreal lakes. Specifically, we conducted quantitative syntheses of two lake health indicators: elemental lead (Pb) and chlorophyll a. Segmented regressions and Mann-Kendall trend analysis revealed a generally increasing trend in elemental Pb across the boreal zone until ~1970 CE, followed by a generally decreasing trend to the present. Snapshot comparisons of sedimentary chlorophyll a from recent and pre-industrial sediments (i.e., top-bottom sediment core design) revealed that a majority of sites have increased over time, suggesting a general enhancement in lake primary production across the boreal zone. Collectively, this body of work demonstrates that long-term sediment records offer a critical perspective on ecosystem change not accessible through routine monitoring programs. We advocate using modern datasets in tandem with paleolimnology to establish baseline conditions, measure ecosystem changes, and set meaningful management targets.","PeriodicalId":50514,"journal":{"name":"Environmental Reviews","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-term environmental changes in the Canadian boreal zone: Synthesizing temporal trends from lake sediment archives to inform future sustainability\",\"authors\":\"Michelle Gros, David R. Zilkey, Katherine Griffiths, Jennifer Pham, P. MacKeigan, Z. Taranu, Candice Aulard, Alexandre Baud, Rebecca E. Garner, H. Ghanbari, M. Lachapelle, Marie‐Eve Monchamp, Cynthia H. Paquette, D. Antoniades, P. Francus, J. Smol, I. Gregory‐Eaves\",\"doi\":\"10.1139/er-2023-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Covering 55% of Canada’s total surface area and stretching from coast to coast to coast, the Canadian boreal zone is crucial to the nation’s economic and ecological integrity. Although often viewed as relatively underdeveloped, it is vulnerable to numerous stressors such as mining, forestry, and anthropogenic climate change. Natural archives preserved in lake sediments can provide key insights by quantifying pre-disturbance conditions (pre-1850 CE) and the nature, magnitude, direction, and speed of environmental change induced by anthropogenic stressors over the past ~150 years. Here, we paired a review of paleolimnological literature of the Canadian boreal zone with analyses of published sediment core data to highlight the effects of climate change, catchment disturbances, and atmospheric deposition on boreal lakes. Specifically, we conducted quantitative syntheses of two lake health indicators: elemental lead (Pb) and chlorophyll a. Segmented regressions and Mann-Kendall trend analysis revealed a generally increasing trend in elemental Pb across the boreal zone until ~1970 CE, followed by a generally decreasing trend to the present. Snapshot comparisons of sedimentary chlorophyll a from recent and pre-industrial sediments (i.e., top-bottom sediment core design) revealed that a majority of sites have increased over time, suggesting a general enhancement in lake primary production across the boreal zone. Collectively, this body of work demonstrates that long-term sediment records offer a critical perspective on ecosystem change not accessible through routine monitoring programs. We advocate using modern datasets in tandem with paleolimnology to establish baseline conditions, measure ecosystem changes, and set meaningful management targets.\",\"PeriodicalId\":50514,\"journal\":{\"name\":\"Environmental Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Reviews\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1139/er-2023-0006\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Reviews","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1139/er-2023-0006","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Long-term environmental changes in the Canadian boreal zone: Synthesizing temporal trends from lake sediment archives to inform future sustainability
Covering 55% of Canada’s total surface area and stretching from coast to coast to coast, the Canadian boreal zone is crucial to the nation’s economic and ecological integrity. Although often viewed as relatively underdeveloped, it is vulnerable to numerous stressors such as mining, forestry, and anthropogenic climate change. Natural archives preserved in lake sediments can provide key insights by quantifying pre-disturbance conditions (pre-1850 CE) and the nature, magnitude, direction, and speed of environmental change induced by anthropogenic stressors over the past ~150 years. Here, we paired a review of paleolimnological literature of the Canadian boreal zone with analyses of published sediment core data to highlight the effects of climate change, catchment disturbances, and atmospheric deposition on boreal lakes. Specifically, we conducted quantitative syntheses of two lake health indicators: elemental lead (Pb) and chlorophyll a. Segmented regressions and Mann-Kendall trend analysis revealed a generally increasing trend in elemental Pb across the boreal zone until ~1970 CE, followed by a generally decreasing trend to the present. Snapshot comparisons of sedimentary chlorophyll a from recent and pre-industrial sediments (i.e., top-bottom sediment core design) revealed that a majority of sites have increased over time, suggesting a general enhancement in lake primary production across the boreal zone. Collectively, this body of work demonstrates that long-term sediment records offer a critical perspective on ecosystem change not accessible through routine monitoring programs. We advocate using modern datasets in tandem with paleolimnology to establish baseline conditions, measure ecosystem changes, and set meaningful management targets.
期刊介绍:
Published since 1993, Environmental Reviews is a quarterly journal that presents authoritative literature reviews on a wide range of environmental science and associated environmental studies topics, with emphasis on the effects on and response of both natural and manmade ecosystems to anthropogenic stress. The authorship and scope are international, with critical literature reviews submitted and invited on such topics as sustainability, water supply management, climate change, harvesting impacts, acid rain, pesticide use, lake acidification, air and marine pollution, oil and gas development, biological control, food chain biomagnification, rehabilitation of polluted aquatic systems, erosion, forestry, bio-indicators of environmental stress, conservation of biodiversity, and many other environmental issues.