Tao Wang , Dong-Wei Yao , Guang-Zhong Yin , Yan Jiang , Na Wang , De-Yi Wang
{"title":"没食子酸-铁配合物改性氢氧化镁及其对EVA阻燃性能的影响","authors":"Tao Wang , Dong-Wei Yao , Guang-Zhong Yin , Yan Jiang , Na Wang , De-Yi Wang","doi":"10.1016/j.aiepr.2022.12.003","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a green method of modifying high flame retardant and high mechanical properties MH was proposed, gallic acid (GA)-Fe<sup>3+</sup> complex was employed to modify the surface of magnesium hydroxide (MH), aiming to achieve novel functionalized MH-based flame retardant for ethylene-vinyl acetate copolymer (EVA). The structural and morphological characterization of the newly designed flame retardant were studied by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, Scanning electron microscope and X-ray Diffraction. The flame retardancy of EVA, EVA/MH, EVA/MH@Fe-GA was investigated via Limiting oxygen index, UL-94 vertical combustion tests, and cone calorimeter test. The LOI and UL94 results showed that EVA/MH@Fe-GA (01) achieved an LOI of 38.5% and UL-94 passed the V-0 grade. The CCT results showed that compared with neat EVA, the peak heat release rate (pHRR) of EVA/MH@Fe-GA decreased by 90.83%, and TSP decreased by 86%, as compared to neat EVA. The mechanical properties of EVA/MH, EVA/MH@Fe-GA were investigated via tensile and impact tests. Compared with EVA/MH, MH@GA-Fe shows good tensile property and impact resistance, the impact strength of EVA/MH@Fe-GA increased by more than 28%, and the elongation at break increased by 145%.</p></div>","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":"6 2","pages":"Pages 172-180"},"PeriodicalIF":9.9000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Gallic acid-iron complex modified magnesium hydroxide and its effect on flame retardancy of EVA\",\"authors\":\"Tao Wang , Dong-Wei Yao , Guang-Zhong Yin , Yan Jiang , Na Wang , De-Yi Wang\",\"doi\":\"10.1016/j.aiepr.2022.12.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, a green method of modifying high flame retardant and high mechanical properties MH was proposed, gallic acid (GA)-Fe<sup>3+</sup> complex was employed to modify the surface of magnesium hydroxide (MH), aiming to achieve novel functionalized MH-based flame retardant for ethylene-vinyl acetate copolymer (EVA). The structural and morphological characterization of the newly designed flame retardant were studied by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, Scanning electron microscope and X-ray Diffraction. The flame retardancy of EVA, EVA/MH, EVA/MH@Fe-GA was investigated via Limiting oxygen index, UL-94 vertical combustion tests, and cone calorimeter test. The LOI and UL94 results showed that EVA/MH@Fe-GA (01) achieved an LOI of 38.5% and UL-94 passed the V-0 grade. The CCT results showed that compared with neat EVA, the peak heat release rate (pHRR) of EVA/MH@Fe-GA decreased by 90.83%, and TSP decreased by 86%, as compared to neat EVA. The mechanical properties of EVA/MH, EVA/MH@Fe-GA were investigated via tensile and impact tests. Compared with EVA/MH, MH@GA-Fe shows good tensile property and impact resistance, the impact strength of EVA/MH@Fe-GA increased by more than 28%, and the elongation at break increased by 145%.</p></div>\",\"PeriodicalId\":7186,\"journal\":{\"name\":\"Advanced Industrial and Engineering Polymer Research\",\"volume\":\"6 2\",\"pages\":\"Pages 172-180\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Industrial and Engineering Polymer Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542504822000550\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Industrial and Engineering Polymer Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542504822000550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Gallic acid-iron complex modified magnesium hydroxide and its effect on flame retardancy of EVA
In this paper, a green method of modifying high flame retardant and high mechanical properties MH was proposed, gallic acid (GA)-Fe3+ complex was employed to modify the surface of magnesium hydroxide (MH), aiming to achieve novel functionalized MH-based flame retardant for ethylene-vinyl acetate copolymer (EVA). The structural and morphological characterization of the newly designed flame retardant were studied by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, Scanning electron microscope and X-ray Diffraction. The flame retardancy of EVA, EVA/MH, EVA/MH@Fe-GA was investigated via Limiting oxygen index, UL-94 vertical combustion tests, and cone calorimeter test. The LOI and UL94 results showed that EVA/MH@Fe-GA (01) achieved an LOI of 38.5% and UL-94 passed the V-0 grade. The CCT results showed that compared with neat EVA, the peak heat release rate (pHRR) of EVA/MH@Fe-GA decreased by 90.83%, and TSP decreased by 86%, as compared to neat EVA. The mechanical properties of EVA/MH, EVA/MH@Fe-GA were investigated via tensile and impact tests. Compared with EVA/MH, MH@GA-Fe shows good tensile property and impact resistance, the impact strength of EVA/MH@Fe-GA increased by more than 28%, and the elongation at break increased by 145%.