{"title":"北美北方森林演替动态的评述","authors":"K. Anyomi, Brad Neary, Jiaxin Chen, S. J. Mayor","doi":"10.1139/er-2021-0106","DOIUrl":null,"url":null,"abstract":"Forest succession is a dynamic process of progressive compositional development of ecological communities of species following natural or anthropogenic disturbance. Despite a rich history of conceptual frameworks, models, and empirical advances, the complex interactions among climatic conditions, disturbances, edaphic factors, and silvicultural treatments still challenge our ability to accurately predict forest succession, hindering application to forest management. Our goal was to improve understanding of forest succession in the managed boreal forests of North America by clarifying advances in knowledge and limitations in our understanding. We reviewed 152 peer reviewed papers to (i) document conceptual developments in forest succession; (ii) summarize drivers of North American boreal forest succession, including changes to forest composition and successional trajectories given climate change; and (iii) discuss the implications of the synthesized information for boreal forest management. While the element of stochasticity is expected to increase under climate change, successional dynamics are anticipated to remain predominantly deterministic. Southern boreal forests are at increased risk of mortality due to warming-driven drought and increased fires. Following disturbance, regeneration is likely to favour deciduous hardwoods. In boreal mixedwoods, increased fires would promote jack pine, and also black spruce on hydric and xeric sites. Dynamics of the northern boreal will depend on the balance between precipitation and evapotranspiration. Forest management must carefully select prescriptions to promote forest regeneration and composition that considers the long-term effects of changing climate and disturbance regimes. For instance, combining retention cut with mechanical site preparation would maintain site productivity and reverse open black spruce stand development in northern boreal stands. Our work shows that multiple disturbances have compounding effects on forest development, but further work is needed to better define thresholds for synergistic and buffering interactions. Modelling of boreal forest succession can be improved by incorporating more of the influential factors, but this is often limited by the lack of data. This information will guide the development of forest management strategies by exploring combinations of prescribed fire and variable intensity selection cutting systems to reproduce the effects of multiple interacting natural disturbances under climate change on successional dynamics.","PeriodicalId":50514,"journal":{"name":"Environmental Reviews","volume":" ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2022-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A CRITICAL REVIEW OF SUCCESSIONAL DYNAMICS IN BOREAL FORESTS OF NORTH AMERICA\",\"authors\":\"K. Anyomi, Brad Neary, Jiaxin Chen, S. J. Mayor\",\"doi\":\"10.1139/er-2021-0106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forest succession is a dynamic process of progressive compositional development of ecological communities of species following natural or anthropogenic disturbance. Despite a rich history of conceptual frameworks, models, and empirical advances, the complex interactions among climatic conditions, disturbances, edaphic factors, and silvicultural treatments still challenge our ability to accurately predict forest succession, hindering application to forest management. Our goal was to improve understanding of forest succession in the managed boreal forests of North America by clarifying advances in knowledge and limitations in our understanding. We reviewed 152 peer reviewed papers to (i) document conceptual developments in forest succession; (ii) summarize drivers of North American boreal forest succession, including changes to forest composition and successional trajectories given climate change; and (iii) discuss the implications of the synthesized information for boreal forest management. While the element of stochasticity is expected to increase under climate change, successional dynamics are anticipated to remain predominantly deterministic. Southern boreal forests are at increased risk of mortality due to warming-driven drought and increased fires. Following disturbance, regeneration is likely to favour deciduous hardwoods. In boreal mixedwoods, increased fires would promote jack pine, and also black spruce on hydric and xeric sites. Dynamics of the northern boreal will depend on the balance between precipitation and evapotranspiration. Forest management must carefully select prescriptions to promote forest regeneration and composition that considers the long-term effects of changing climate and disturbance regimes. For instance, combining retention cut with mechanical site preparation would maintain site productivity and reverse open black spruce stand development in northern boreal stands. Our work shows that multiple disturbances have compounding effects on forest development, but further work is needed to better define thresholds for synergistic and buffering interactions. Modelling of boreal forest succession can be improved by incorporating more of the influential factors, but this is often limited by the lack of data. This information will guide the development of forest management strategies by exploring combinations of prescribed fire and variable intensity selection cutting systems to reproduce the effects of multiple interacting natural disturbances under climate change on successional dynamics.\",\"PeriodicalId\":50514,\"journal\":{\"name\":\"Environmental Reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Reviews\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1139/er-2021-0106\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Reviews","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1139/er-2021-0106","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
A CRITICAL REVIEW OF SUCCESSIONAL DYNAMICS IN BOREAL FORESTS OF NORTH AMERICA
Forest succession is a dynamic process of progressive compositional development of ecological communities of species following natural or anthropogenic disturbance. Despite a rich history of conceptual frameworks, models, and empirical advances, the complex interactions among climatic conditions, disturbances, edaphic factors, and silvicultural treatments still challenge our ability to accurately predict forest succession, hindering application to forest management. Our goal was to improve understanding of forest succession in the managed boreal forests of North America by clarifying advances in knowledge and limitations in our understanding. We reviewed 152 peer reviewed papers to (i) document conceptual developments in forest succession; (ii) summarize drivers of North American boreal forest succession, including changes to forest composition and successional trajectories given climate change; and (iii) discuss the implications of the synthesized information for boreal forest management. While the element of stochasticity is expected to increase under climate change, successional dynamics are anticipated to remain predominantly deterministic. Southern boreal forests are at increased risk of mortality due to warming-driven drought and increased fires. Following disturbance, regeneration is likely to favour deciduous hardwoods. In boreal mixedwoods, increased fires would promote jack pine, and also black spruce on hydric and xeric sites. Dynamics of the northern boreal will depend on the balance between precipitation and evapotranspiration. Forest management must carefully select prescriptions to promote forest regeneration and composition that considers the long-term effects of changing climate and disturbance regimes. For instance, combining retention cut with mechanical site preparation would maintain site productivity and reverse open black spruce stand development in northern boreal stands. Our work shows that multiple disturbances have compounding effects on forest development, but further work is needed to better define thresholds for synergistic and buffering interactions. Modelling of boreal forest succession can be improved by incorporating more of the influential factors, but this is often limited by the lack of data. This information will guide the development of forest management strategies by exploring combinations of prescribed fire and variable intensity selection cutting systems to reproduce the effects of multiple interacting natural disturbances under climate change on successional dynamics.
期刊介绍:
Published since 1993, Environmental Reviews is a quarterly journal that presents authoritative literature reviews on a wide range of environmental science and associated environmental studies topics, with emphasis on the effects on and response of both natural and manmade ecosystems to anthropogenic stress. The authorship and scope are international, with critical literature reviews submitted and invited on such topics as sustainability, water supply management, climate change, harvesting impacts, acid rain, pesticide use, lake acidification, air and marine pollution, oil and gas development, biological control, food chain biomagnification, rehabilitation of polluted aquatic systems, erosion, forestry, bio-indicators of environmental stress, conservation of biodiversity, and many other environmental issues.