Adrian Garrido Sanchis , Zachary J.H. Berra , Lamia Sultana , Hongxu Wang , Paul J. Hazell
{"title":"建立了利用水中炸药爆炸产生的冲击波和热气泡进行水消毒的下限","authors":"Adrian Garrido Sanchis , Zachary J.H. Berra , Lamia Sultana , Hongxu Wang , Paul J. Hazell","doi":"10.1016/j.wri.2022.100187","DOIUrl":null,"url":null,"abstract":"<div><p>Water sterilisation requires the inactivation of waterborne pathogens, like <em>E.coli</em>, to such low levels that its use will not cause illness. Here, we examine a potential methodology for disinfecting water through the combined effect of hot expanding gases and shock waves from underwater explosions. Water pathogens located within the proximity of the explosive charge will be exposed to two different sterilisation conditions: firstly, the high-pressure shock wave moving within the fluid, and secondly, the expanding hot N<sub>2</sub>, O<sub>2,</sub> and CO<sub>2</sub> bubbles that are products of the explosion. To simulate the first case, we used a flyer-plate technique to understand the lower threshold for inactivation. We did this with a novel capsule design in a single-stage light gas-gun and observed 0.813 Logs of <em>E.coli</em> inactivation after subjecting an entire bacterial broth to a minimum pressure of 3.53 GPa thereby indicating a lower threshold for shock pressure-induced inactivation. For the second case, we show that hot gas bubbles from different explosive gaseous products at 150°C in a bubble column established the minimum gas temperature thresholds required to successfully inactivate <em>E.coli</em>. This work shows that any benefit of using explosives to sterilise water will principally come from the release of hot gaseous bubbles rather than the effect of the shock. This new approach could be used in conflict areas or remote locations with no access to standard sterilisation technologies or power.</p></div>","PeriodicalId":23714,"journal":{"name":"Water Resources and Industry","volume":"28 ","pages":"Article 100187"},"PeriodicalIF":4.5000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212371722000208/pdfft?md5=425b3065b6a47bfbf6ab5fce54349817&pid=1-s2.0-S2212371722000208-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Establishing the lower thresholds for water sterilisation with shock waves and hot gas bubbles from the detonation of explosives in water\",\"authors\":\"Adrian Garrido Sanchis , Zachary J.H. Berra , Lamia Sultana , Hongxu Wang , Paul J. Hazell\",\"doi\":\"10.1016/j.wri.2022.100187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Water sterilisation requires the inactivation of waterborne pathogens, like <em>E.coli</em>, to such low levels that its use will not cause illness. Here, we examine a potential methodology for disinfecting water through the combined effect of hot expanding gases and shock waves from underwater explosions. Water pathogens located within the proximity of the explosive charge will be exposed to two different sterilisation conditions: firstly, the high-pressure shock wave moving within the fluid, and secondly, the expanding hot N<sub>2</sub>, O<sub>2,</sub> and CO<sub>2</sub> bubbles that are products of the explosion. To simulate the first case, we used a flyer-plate technique to understand the lower threshold for inactivation. We did this with a novel capsule design in a single-stage light gas-gun and observed 0.813 Logs of <em>E.coli</em> inactivation after subjecting an entire bacterial broth to a minimum pressure of 3.53 GPa thereby indicating a lower threshold for shock pressure-induced inactivation. For the second case, we show that hot gas bubbles from different explosive gaseous products at 150°C in a bubble column established the minimum gas temperature thresholds required to successfully inactivate <em>E.coli</em>. This work shows that any benefit of using explosives to sterilise water will principally come from the release of hot gaseous bubbles rather than the effect of the shock. This new approach could be used in conflict areas or remote locations with no access to standard sterilisation technologies or power.</p></div>\",\"PeriodicalId\":23714,\"journal\":{\"name\":\"Water Resources and Industry\",\"volume\":\"28 \",\"pages\":\"Article 100187\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2212371722000208/pdfft?md5=425b3065b6a47bfbf6ab5fce54349817&pid=1-s2.0-S2212371722000208-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Resources and Industry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212371722000208\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources and Industry","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212371722000208","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Establishing the lower thresholds for water sterilisation with shock waves and hot gas bubbles from the detonation of explosives in water
Water sterilisation requires the inactivation of waterborne pathogens, like E.coli, to such low levels that its use will not cause illness. Here, we examine a potential methodology for disinfecting water through the combined effect of hot expanding gases and shock waves from underwater explosions. Water pathogens located within the proximity of the explosive charge will be exposed to two different sterilisation conditions: firstly, the high-pressure shock wave moving within the fluid, and secondly, the expanding hot N2, O2, and CO2 bubbles that are products of the explosion. To simulate the first case, we used a flyer-plate technique to understand the lower threshold for inactivation. We did this with a novel capsule design in a single-stage light gas-gun and observed 0.813 Logs of E.coli inactivation after subjecting an entire bacterial broth to a minimum pressure of 3.53 GPa thereby indicating a lower threshold for shock pressure-induced inactivation. For the second case, we show that hot gas bubbles from different explosive gaseous products at 150°C in a bubble column established the minimum gas temperature thresholds required to successfully inactivate E.coli. This work shows that any benefit of using explosives to sterilise water will principally come from the release of hot gaseous bubbles rather than the effect of the shock. This new approach could be used in conflict areas or remote locations with no access to standard sterilisation technologies or power.
期刊介绍:
Water Resources and Industry moves research to innovation by focusing on the role industry plays in the exploitation, management and treatment of water resources. Different industries use radically different water resources in their production processes, while they produce, treat and dispose a wide variety of wastewater qualities. Depending on the geographical location of the facilities, the impact on the local resources will vary, pre-empting the applicability of one single approach. The aims and scope of the journal include: -Industrial water footprint assessment - an evaluation of tools and methodologies -What constitutes good corporate governance and policy and how to evaluate water-related risk -What constitutes good stakeholder collaboration and engagement -New technologies enabling companies to better manage water resources -Integration of water and energy and of water treatment and production processes in industry