{"title":"用于增强生物聚合物复合材料和涂层的镁基合金:生物医学材料的关键概述","authors":"Akarsh Verma, Shigenobu Ogata","doi":"10.1016/j.aiepr.2023.01.002","DOIUrl":null,"url":null,"abstract":"<div><p>Magnesium (Mg) & its alloys are favourable for orthopaedic & cardiovascular medical device fabrication applications, but holds a natural ability to degrade biologically when put with aqueous solution of the substances and/or water-saturated tissue in the context of a living organism. Mg alloys nature to corrode inside the living organism body is mainly attributed to the excessive rates of corrosion of Mg. Poor corrosion resistance possessed by Mg decreases the mechanical properties of the implants, and adds toxic effects on the bone metabolism. A potential method for increasing Mg alloy resistance to corrosion without changing its properties is by the protective polymeric deposit coatings. Moreover, to impart better mechanical and biocompatible aspects to Mg based materials biopolymers have been used as a composite constituent. This review is based on such composite materials constituting Mg and biopolymers. Their resulting favourable mechanical and osteopromotive properties in conjunction with biocompatibility may help the clinicians to fix the existing orthopaedic related issues.</p></div>","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":null,"pages":null},"PeriodicalIF":9.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Magnesium based alloys for reinforcing biopolymer composites and coatings: A critical overview on biomedical materials\",\"authors\":\"Akarsh Verma, Shigenobu Ogata\",\"doi\":\"10.1016/j.aiepr.2023.01.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Magnesium (Mg) & its alloys are favourable for orthopaedic & cardiovascular medical device fabrication applications, but holds a natural ability to degrade biologically when put with aqueous solution of the substances and/or water-saturated tissue in the context of a living organism. Mg alloys nature to corrode inside the living organism body is mainly attributed to the excessive rates of corrosion of Mg. Poor corrosion resistance possessed by Mg decreases the mechanical properties of the implants, and adds toxic effects on the bone metabolism. A potential method for increasing Mg alloy resistance to corrosion without changing its properties is by the protective polymeric deposit coatings. Moreover, to impart better mechanical and biocompatible aspects to Mg based materials biopolymers have been used as a composite constituent. This review is based on such composite materials constituting Mg and biopolymers. Their resulting favourable mechanical and osteopromotive properties in conjunction with biocompatibility may help the clinicians to fix the existing orthopaedic related issues.</p></div>\",\"PeriodicalId\":7186,\"journal\":{\"name\":\"Advanced Industrial and Engineering Polymer Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Industrial and Engineering Polymer Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542504823000118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Industrial and Engineering Polymer Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542504823000118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Magnesium based alloys for reinforcing biopolymer composites and coatings: A critical overview on biomedical materials
Magnesium (Mg) & its alloys are favourable for orthopaedic & cardiovascular medical device fabrication applications, but holds a natural ability to degrade biologically when put with aqueous solution of the substances and/or water-saturated tissue in the context of a living organism. Mg alloys nature to corrode inside the living organism body is mainly attributed to the excessive rates of corrosion of Mg. Poor corrosion resistance possessed by Mg decreases the mechanical properties of the implants, and adds toxic effects on the bone metabolism. A potential method for increasing Mg alloy resistance to corrosion without changing its properties is by the protective polymeric deposit coatings. Moreover, to impart better mechanical and biocompatible aspects to Mg based materials biopolymers have been used as a composite constituent. This review is based on such composite materials constituting Mg and biopolymers. Their resulting favourable mechanical and osteopromotive properties in conjunction with biocompatibility may help the clinicians to fix the existing orthopaedic related issues.