求助PDF
{"title":"聚双(3-溴-2-羟基苯甲醛)-2-氨基嘧啶镁(II)的晶体结构及对1,3-丁二烯加氢的催化活性","authors":"Lihua Wang, F. Kong, X. Tai","doi":"10.9767/BCREC.16.2.10421.260-266","DOIUrl":null,"url":null,"abstract":"A new six-coordinated Mn(II) coordination polymer, [Mn(L1)(L2)2]n (L1 = 2-aminopyrimidine, HL2 = 3-bromo-2hydroxybenzaldehyde) was synthesized by 3-bromo-2-hydroxybenzaldehyde, NaOH, 2-aminopyrimidine and manganese(II) acetate dihydrate. The Mn(II) coordination polymer was structural characterized by elemental analysis and single crystal X-ray diffraction. The results show that each Mn(II) ion is six-coordinated with two phenolic hydroxyl O atoms from two 3-bromo-2-hydroxybenzaldehyde ligands (O1 and O4), two formyl group O atoms from two 3-bromo-2-hydroxybenzaldehyde ligands (O2 and O3), and two N atoms from two 2-aminopyrimidine molecules (N1A and N2), and forms a distorted octahedral coordination geometry. The Mn(II) coordination polymer displays a 1D chained structure by the bridge effect of 2-aminopyrimidine N atoms. The catalytic activities of Mn(II) coordination polymer and Pd@Mn(II) coordination polymer for hydrogenation of 1,3-butadiene have been investigated. The Pd@Mn(II) coordination polymer catalyst shows the good catalytic activity and selectivity in the hydrogenation of 1,3-butadiene. The 1,3-butadiene conversion is 61.3% at 70 °C, and the selectivity to total butene is close to 100%. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).","PeriodicalId":46276,"journal":{"name":"Bulletin of Chemical Reaction Engineering and Catalysis","volume":"16 1","pages":"260-266"},"PeriodicalIF":1.3000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Crystal Structure and Catalytic Activity of Poly[bis(3-bromo-2-hydroxybenzaldehyde)-2-aminopyrimidinemagnesium(II)] for Hydrogenation of 1,3-Butadiene\",\"authors\":\"Lihua Wang, F. Kong, X. Tai\",\"doi\":\"10.9767/BCREC.16.2.10421.260-266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new six-coordinated Mn(II) coordination polymer, [Mn(L1)(L2)2]n (L1 = 2-aminopyrimidine, HL2 = 3-bromo-2hydroxybenzaldehyde) was synthesized by 3-bromo-2-hydroxybenzaldehyde, NaOH, 2-aminopyrimidine and manganese(II) acetate dihydrate. The Mn(II) coordination polymer was structural characterized by elemental analysis and single crystal X-ray diffraction. The results show that each Mn(II) ion is six-coordinated with two phenolic hydroxyl O atoms from two 3-bromo-2-hydroxybenzaldehyde ligands (O1 and O4), two formyl group O atoms from two 3-bromo-2-hydroxybenzaldehyde ligands (O2 and O3), and two N atoms from two 2-aminopyrimidine molecules (N1A and N2), and forms a distorted octahedral coordination geometry. The Mn(II) coordination polymer displays a 1D chained structure by the bridge effect of 2-aminopyrimidine N atoms. The catalytic activities of Mn(II) coordination polymer and Pd@Mn(II) coordination polymer for hydrogenation of 1,3-butadiene have been investigated. The Pd@Mn(II) coordination polymer catalyst shows the good catalytic activity and selectivity in the hydrogenation of 1,3-butadiene. The 1,3-butadiene conversion is 61.3% at 70 °C, and the selectivity to total butene is close to 100%. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).\",\"PeriodicalId\":46276,\"journal\":{\"name\":\"Bulletin of Chemical Reaction Engineering and Catalysis\",\"volume\":\"16 1\",\"pages\":\"260-266\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Chemical Reaction Engineering and Catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9767/BCREC.16.2.10421.260-266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Chemical Reaction Engineering and Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9767/BCREC.16.2.10421.260-266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 4
引用
批量引用
Crystal Structure and Catalytic Activity of Poly[bis(3-bromo-2-hydroxybenzaldehyde)-2-aminopyrimidinemagnesium(II)] for Hydrogenation of 1,3-Butadiene
A new six-coordinated Mn(II) coordination polymer, [Mn(L1)(L2)2]n (L1 = 2-aminopyrimidine, HL2 = 3-bromo-2hydroxybenzaldehyde) was synthesized by 3-bromo-2-hydroxybenzaldehyde, NaOH, 2-aminopyrimidine and manganese(II) acetate dihydrate. The Mn(II) coordination polymer was structural characterized by elemental analysis and single crystal X-ray diffraction. The results show that each Mn(II) ion is six-coordinated with two phenolic hydroxyl O atoms from two 3-bromo-2-hydroxybenzaldehyde ligands (O1 and O4), two formyl group O atoms from two 3-bromo-2-hydroxybenzaldehyde ligands (O2 and O3), and two N atoms from two 2-aminopyrimidine molecules (N1A and N2), and forms a distorted octahedral coordination geometry. The Mn(II) coordination polymer displays a 1D chained structure by the bridge effect of 2-aminopyrimidine N atoms. The catalytic activities of Mn(II) coordination polymer and Pd@Mn(II) coordination polymer for hydrogenation of 1,3-butadiene have been investigated. The Pd@Mn(II) coordination polymer catalyst shows the good catalytic activity and selectivity in the hydrogenation of 1,3-butadiene. The 1,3-butadiene conversion is 61.3% at 70 °C, and the selectivity to total butene is close to 100%. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).