首页 > 最新文献

Bulletin of Chemical Reaction Engineering and Catalysis最新文献

英文 中文
Insight into Structural Features of Magnetic Kaolinite Nanocomposite and Its Potential for Methylene Blue Dye Removal from Aqueous Solution 磁性高岭土纳米复合材料的结构特征及其从水溶液中去除亚甲基蓝染料的潜力
IF 1.5 Q3 ENGINEERING, CHEMICAL Pub Date : 2022-01-27 DOI: 10.9767/bcrec.17.1.12733.205-215
Izzan Salwana Izman, M. Johan, R. Rusmin
An in-depth understanding on the structural features of engineered magnetic adsorbent is important for forecasting its efficiencies for environmental clean-up studies. A magnetic kaolinite nanocomposite (MKN) was prepared using Malaysia’s natural kaolinite via co-precipitation method with a three different clay: iron oxide mass ratio (MKN 1:1, MKN 2:1 and MKN 5:1). The morphology and structural features of the magnetic composites were systematically investigated using techniques, such as: Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), surface area analysis (BET), Vibrating Sample Magnetometer (VSM), and zeta potential measurement. The removal efficiencies of the adsorbent for Methylene Blue (MB) dye were studied in batch method as a function of pH and initial concentration. MKN1:1 demonstrated the highest magnetisation susceptibility (Ms) of 35.9 emu/g with four-fold-increase in specific surface area as compared to the pristine kaolinite. Preliminary experiment reveals that all MKNs showed almost 100% removal of MB at low initial concentration (<50 ppm). The spent MKN adsorbent demonstrated an easy recovery via external magnetic field separation and recorded maximum adsorption capacity of 18.1 mg/g. This research gives an insight on the surface characteristics of magnetic clay composite for potential application as an effective and low-cost adsorbent in treating dye contaminated water. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
深入了解工程磁性吸附剂的结构特征对于预测其在环境净化研究中的效率非常重要。以马来西亚天然高岭土为原料,采用共沉淀法,以三种不同的粘土与氧化铁质量比(MKN 1:1、MKN 2:1和MKN 5:1)制备了磁性高岭土纳米复合材料(MKN)。采用傅立叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)、比表面积分析(BET)、振动样品磁强计(VSM)和ζ电位测量等技术,系统地研究了磁性复合材料的形貌和结构特征。采用分批法研究了吸附剂对亚甲基蓝(MB)染料的去除效率与pH和初始浓度的关系。MKN1:1表现出最高的磁化率(Ms)为35.9emu/g,比表面积比原始高岭石增加了四倍。初步实验表明,在低初始浓度(<50ppm)下,所有MKN对MB的去除率几乎为100%。废MKN吸附剂通过外部磁场分离显示出易于回收,并记录了18.1mg/g的最大吸附容量。本研究深入了解了磁性粘土复合材料的表面特性,作为一种有效且低成本的吸附剂,有可能在处理染料污染的水中应用。版权所有©2022作者,BCREC集团出版。这是CC BY-SA许可证下的开放访问文章(https://creativecommons.org/licenses/by-sa/4.0)。
{"title":"Insight into Structural Features of Magnetic Kaolinite Nanocomposite and Its Potential for Methylene Blue Dye Removal from Aqueous Solution","authors":"Izzan Salwana Izman, M. Johan, R. Rusmin","doi":"10.9767/bcrec.17.1.12733.205-215","DOIUrl":"https://doi.org/10.9767/bcrec.17.1.12733.205-215","url":null,"abstract":"An in-depth understanding on the structural features of engineered magnetic adsorbent is important for forecasting its efficiencies for environmental clean-up studies. A magnetic kaolinite nanocomposite (MKN) was prepared using Malaysia’s natural kaolinite via co-precipitation method with a three different clay: iron oxide mass ratio (MKN 1:1, MKN 2:1 and MKN 5:1). The morphology and structural features of the magnetic composites were systematically investigated using techniques, such as: Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), surface area analysis (BET), Vibrating Sample Magnetometer (VSM), and zeta potential measurement. The removal efficiencies of the adsorbent for Methylene Blue (MB) dye were studied in batch method as a function of pH and initial concentration. MKN1:1 demonstrated the highest magnetisation susceptibility (Ms) of 35.9 emu/g with four-fold-increase in specific surface area as compared to the pristine kaolinite. Preliminary experiment reveals that all MKNs showed almost 100% removal of MB at low initial concentration (<50 ppm). The spent MKN adsorbent demonstrated an easy recovery via external magnetic field separation and recorded maximum adsorption capacity of 18.1 mg/g. This research gives an insight on the surface characteristics of magnetic clay composite for potential application as an effective and low-cost adsorbent in treating dye contaminated water. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).","PeriodicalId":46276,"journal":{"name":"Bulletin of Chemical Reaction Engineering and Catalysis","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44583766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Kinetic Study of Styrene Oxidation over Titania Catalyst Supported on Sulfonated Fish Bone-derived Carbon 磺化鱼骨碳负载二氧化钛催化剂氧化苯乙烯的动力学研究
IF 1.5 Q3 ENGINEERING, CHEMICAL Pub Date : 2022-01-24 DOI: 10.9767/bcrec.17.1.13133.194-204
R. Kusumawardani, M. Nurhadi, T. Wirawan, A. Prasetyo, Nabila Nur Agusti, S. Y. Lai, Hadi Nur
The kinetic evaluation of titania supported sulfonated fish bone-derived carbon (TiO2/SFBC) as a catalyst in styrene oxidation by aqueous hydrogen peroxide was carried out. The catalysts were prepared by carbonation of fishbone powder at varying temperatures 500, 600 and 700 °C, respectively for 2 h, followed by sulfonation with sulfuric acid (1M) for 24 h and impregnated by varied titania concentration 500, 1000 and 1500 µmol. The physical properties of catalysts were characterized using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Scanning Electron Microscope-Energy Dispersive X-Ray (SEM-EDX) and the nitrogen adsorption-desorption analysis. The catalytic activity result showed that TiO2/SFBC can be used as a potential catalyst in styrene oxidation. Worth noting that the sulfonation process has not only transformed the TiO2/FBC particulates (without sulfonation) to cuboid-shaped TiO2/SFBC (with sulfonation) but also contributed to the high selectivity of benzaldehyde. On the other hand, carbonization at different temperatures has an indistinct effect on catalytic performance due to their similar surface areas. The styrene conversion rate responded positively with the increasing amount of titania in the functionalized composites. The styrene oxidation by aqueous H2O2 unraveled the first-order reaction with the activation energy of ⁓63.5 kJ. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
对二氧化钛负载的磺化鱼骨衍生碳(TiO2/SFBC)作为过氧化氢水溶液氧化苯乙烯的催化剂进行了动力学评价。催化剂的制备方法是将鱼骨粉分别在500、600和700°C的不同温度下碳酸化2小时,然后用硫酸(1M)磺化24小时,并用500、1000和1500µmol的不同二氧化钛浓度浸渍。利用傅立叶变换红外光谱、X射线衍射、扫描电子显微镜能谱仪和氮吸附-解吸分析对催化剂的物理性能进行了表征。催化活性结果表明,TiO2/SFBC可作为苯乙烯氧化的潜在催化剂。值得注意的是,磺化过程不仅将TiO2/FBC颗粒(未磺化)转化为长方体形状的TiO2/SFBC颗粒(磺化),而且有助于苯甲醛的高选择性。另一方面,不同温度下的碳化由于其表面积相似,对催化性能的影响不明显。苯乙烯转化率随功能化复合材料中二氧化钛含量的增加而呈正响应。H2O2水溶液对苯乙烯的氧化反应为一级反应,活化能为63.5kJ。版权所有©2022作者,BCREC集团出版。这是CC BY-SA许可证下的开放访问文章(https://creativecommons.org/licenses/by-sa/4.0)。
{"title":"Kinetic Study of Styrene Oxidation over Titania Catalyst Supported on Sulfonated Fish Bone-derived Carbon","authors":"R. Kusumawardani, M. Nurhadi, T. Wirawan, A. Prasetyo, Nabila Nur Agusti, S. Y. Lai, Hadi Nur","doi":"10.9767/bcrec.17.1.13133.194-204","DOIUrl":"https://doi.org/10.9767/bcrec.17.1.13133.194-204","url":null,"abstract":"The kinetic evaluation of titania supported sulfonated fish bone-derived carbon (TiO2/SFBC) as a catalyst in styrene oxidation by aqueous hydrogen peroxide was carried out. The catalysts were prepared by carbonation of fishbone powder at varying temperatures 500, 600 and 700 °C, respectively for 2 h, followed by sulfonation with sulfuric acid (1M) for 24 h and impregnated by varied titania concentration 500, 1000 and 1500 µmol. The physical properties of catalysts were characterized using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Scanning Electron Microscope-Energy Dispersive X-Ray (SEM-EDX) and the nitrogen adsorption-desorption analysis. The catalytic activity result showed that TiO2/SFBC can be used as a potential catalyst in styrene oxidation. Worth noting that the sulfonation process has not only transformed the TiO2/FBC particulates (without sulfonation) to cuboid-shaped TiO2/SFBC (with sulfonation) but also contributed to the high selectivity of benzaldehyde. On the other hand, carbonization at different temperatures has an indistinct effect on catalytic performance due to their similar surface areas. The styrene conversion rate responded positively with the increasing amount of titania in the functionalized composites. The styrene oxidation by aqueous H2O2 unraveled the first-order reaction with the activation energy of ⁓63.5 kJ. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). ","PeriodicalId":46276,"journal":{"name":"Bulletin of Chemical Reaction Engineering and Catalysis","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2022-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46502466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
CTAB Reverse Micelles as Catalysts for the Oxidation of Ascorbic Acid by K3[Fe(CN)6] CTAB反胶束作为K3[Fe(CN)6]氧化抗坏血酸的催化剂
IF 1.5 Q3 ENGINEERING, CHEMICAL Pub Date : 2022-01-05 DOI: 10.9767/bcrec.17.1.12732.157-162
K. Bhargavi, P. Shyamala, P. Chakravarthi, K. Nagalakshmi
The oxidation of ascorbic acid by K3[Fe(CN)6] was studied in reverse micellar systems composed of CTAB (Cetyltrimethylammonium bromide), and it was found  the observed first order  (k1(aq) = 5.2×10−5 s−1, k1(rev) = 61.4×10−4 s−1) rate constant in reverse micellar medium is around forty times higher compared to aqueous medium under identical conditions. The rate enhancement (k2(aq) = 0.9×10−5 mole−1.dm3.sec−1, k2(rev) = 1.75×10−3 mole−1.dm3.sec−1)  is attributed to the large concentration effect and lower dielectric constant in the reverse micelles. The rate of the reaction increases with increase in W = {[H2O]/[surfactant]} which is explained in terms of ionic strength of the water pool. The effect of surfactant concentration on rate was explained on the basis of Berezin pseudo phase model. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
研究了K3[Fe(CN)6]在十六烷基三甲基溴化铵反胶束体系中对抗坏血酸的氧化反应,发现在相同条件下,反胶束介质中观察到的一阶(k1(aq)=5.2×10−5 s−1,k1(rev)=61.4×10−4 s−1)速率常数是水介质的40倍左右。速率增强(k2(aq)=0.9×10−5 mol−1.dm3.sec-1,k2(rev)=1.75×10−3 mol−1.dm3.sec-1)归因于反胶束中的大浓度效应和较低的介电常数。反应速率随着W={[H2O]/[表面活性剂]}的增加而增加,这可以用水池的离子强度来解释。基于Berezin拟相模型解释了表面活性剂浓度对速率的影响。版权所有©2021作者所有,BCREC集团出版。这是CC BY-SA许可证下的开放访问文章(https://creativecommons.org/licenses/by-sa/4.0)。
{"title":"CTAB Reverse Micelles as Catalysts for the Oxidation of Ascorbic Acid by K3[Fe(CN)6]","authors":"K. Bhargavi, P. Shyamala, P. Chakravarthi, K. Nagalakshmi","doi":"10.9767/bcrec.17.1.12732.157-162","DOIUrl":"https://doi.org/10.9767/bcrec.17.1.12732.157-162","url":null,"abstract":"The oxidation of ascorbic acid by K3[Fe(CN)6] was studied in reverse micellar systems composed of CTAB (Cetyltrimethylammonium bromide), and it was found  the observed first order  (k1(aq) = 5.2×10−5 s−1, k1(rev) = 61.4×10−4 s−1) rate constant in reverse micellar medium is around forty times higher compared to aqueous medium under identical conditions. The rate enhancement (k2(aq) = 0.9×10−5 mole−1.dm3.sec−1, k2(rev) = 1.75×10−3 mole−1.dm3.sec−1)  is attributed to the large concentration effect and lower dielectric constant in the reverse micelles. The rate of the reaction increases with increase in W = {[H2O]/[surfactant]} which is explained in terms of ionic strength of the water pool. The effect of surfactant concentration on rate was explained on the basis of Berezin pseudo phase model. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). ","PeriodicalId":46276,"journal":{"name":"Bulletin of Chemical Reaction Engineering and Catalysis","volume":"1 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2022-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43339856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Utilization of Mg-Al/Cu as Selective Adsorbent for Cationic Synthetic Dyes Mg-Al/Cu作为阳离子合成染料选择性吸附剂的应用
IF 1.5 Q3 ENGINEERING, CHEMICAL Pub Date : 2021-12-20 DOI: 10.9767/BCREC.16.4.11043.696-706
A. Badri, N. Palapa, R. Mohadi, M. Mardiyanto, F. Arsyad, A. Lesbani
Mg-Al-LDH is a chemical compound produced through co-precipitation technique and modified with Cu(NO3)2.6H2O to form Mg-Al/Cu. However, the research on the capability of these compounds for adsorbing mixtures of cationic dyes as well as malachite green (MG), methylene blue (MB), and Rodhamine-B (Rh-B) has not been carried out. Therefore, this research aims to determine the performance of Mg-Al-LDH and Mg-Al/Cu for removing cationic dyes. The materials used were characterized by using XRD powder, FT-IR, and N2 adsorption desorption. The Adsorption process was conducted by batch system and several effects were investigated, such as kinetic parameter, isotherm, and the temperature condition. The stability feature of Mg-Al-LDH and Mg-Al/Cu was obtained from the regeneration process in the five cycles. The results presented that Mg-Al/Cu was effectively produced, which was indicated by the formation of layer at 10.792° (003), 22.94° (006), 35.53° (112), 55.78° (110), and  56.59° (116). Mg-Al-LDH and Mg-Al/Cu were found to adsorbed MG than the other cationic dyes with adsorption capacity of 68.996 mg/g and 104.167 mg/g, respectively. The unique properties of Mg-Al/Cu includes, structural stability towards the reuse of adsorbent subsequently for five times, without significant decrease of adsorption capacity. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Mg-Al-LDH是一种通过共沉淀技术制备的化合物,用Cu(NO3)2.6H2O改性形成Mg-Al/Cu。然而,尚未对这些化合物吸附阳离子染料以及孔雀石绿(MG)、亚甲基蓝(MB)和罗汉明-B(Rh-B)的混合物的能力进行研究。因此,本研究旨在测定Mg-Al-LDH和Mg-Al/Cu对阳离子染料的去除性能。通过XRD粉末、FT-IR和N2吸附-解吸对所用材料进行了表征。采用间歇系统对吸附过程进行了研究,考察了吸附动力学参数、吸附等温线和吸附温度等因素对吸附过程的影响。通过五个循环的再生过程,获得了Mg-Al-LDH和Mg-Al/Cu的稳定性特征。结果表明,在10.792°(003)、22.94°(006)、35.53°(112)、55.78°(110)和56.59°(116)处形成了层,从而有效地产生了Mg-Al/Cu。Mg-Al-LDH和Mg-Al/Cu对Mg的吸附量分别为68.996mg/g和104.167mg/g。Mg-Al/Cu的独特性能包括结构稳定性,吸附剂可重复使用五次,吸附能力不会显著降低。版权所有©2021作者所有,BCREC集团出版。这是CC BY-SA许可证下的开放访问文章(https://creativecommons.org/licenses/by-sa/4.0)。
{"title":"The Utilization of Mg-Al/Cu as Selective Adsorbent for Cationic Synthetic Dyes","authors":"A. Badri, N. Palapa, R. Mohadi, M. Mardiyanto, F. Arsyad, A. Lesbani","doi":"10.9767/BCREC.16.4.11043.696-706","DOIUrl":"https://doi.org/10.9767/BCREC.16.4.11043.696-706","url":null,"abstract":"Mg-Al-LDH is a chemical compound produced through co-precipitation technique and modified with Cu(NO3)2.6H2O to form Mg-Al/Cu. However, the research on the capability of these compounds for adsorbing mixtures of cationic dyes as well as malachite green (MG), methylene blue (MB), and Rodhamine-B (Rh-B) has not been carried out. Therefore, this research aims to determine the performance of Mg-Al-LDH and Mg-Al/Cu for removing cationic dyes. The materials used were characterized by using XRD powder, FT-IR, and N2 adsorption desorption. The Adsorption process was conducted by batch system and several effects were investigated, such as kinetic parameter, isotherm, and the temperature condition. The stability feature of Mg-Al-LDH and Mg-Al/Cu was obtained from the regeneration process in the five cycles. The results presented that Mg-Al/Cu was effectively produced, which was indicated by the formation of layer at 10.792° (003), 22.94° (006), 35.53° (112), 55.78° (110), and  56.59° (116). Mg-Al-LDH and Mg-Al/Cu were found to adsorbed MG than the other cationic dyes with adsorption capacity of 68.996 mg/g and 104.167 mg/g, respectively. The unique properties of Mg-Al/Cu includes, structural stability towards the reuse of adsorbent subsequently for five times, without significant decrease of adsorption capacity. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). ","PeriodicalId":46276,"journal":{"name":"Bulletin of Chemical Reaction Engineering and Catalysis","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43391482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Degradation of Ciprofloxacin by Titanium Dioxide (TiO2) Nanoparticles: Optimization of Conditions, Toxicity, and Degradation Pathway 纳米二氧化钛降解环丙沙星的条件、毒性及降解途径的优化
IF 1.5 Q3 ENGINEERING, CHEMICAL Pub Date : 2021-12-20 DOI: 10.9767/bcrec.16.4.11355.752-762
M. Usman, Azmi Prasasti, Sovia Islamiah, A. N. Firdaus, Ayu Wanda Marita, Syamsiyatul Fajriyah, A. Noviyanti, D. Eddy
The popular use of ciprofloxacin is often irrational, so it causes environmental pollution such as resistance. The solution to overcome environmental pollution due to ciprofloxacin is degradation by using TiO2 nanoparticles. TiO2 nanoparticles performance is influenced by environment such as light source, pH solvent, duration of lighting and TiO2 nanoparticles mass. The residual levels determination of ciprofloxacin was carried out by using a UV-Vis spectrophotometer. Toxicity test of ciprofloxacin degradation products with TiO2 nanoparticles used Escherichia coli bacteria. Liquid Chromatography Mass Spectrometry (LCMS) was used to determine the type of ciprofloxacin degradation product with TiO2 nanoparticles. The optimum condition for the ciprofloxacin degradation with TiO2 nanoparticles is lighting for 5 hours by using a white mercury UV lamp and 50 mg TiO2 nanoparticles with pH solvent of 5.5. The toxicity of ciprofloxacin degradation product with TiO2 nanoparticles was low. The smallest degradation product identified with m/z was p-fluoraniline (m/z 111). Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
环丙沙星的普遍使用往往是不合理的,因此造成耐药性等环境污染。克服环丙沙星对环境污染的解决方案是利用TiO2纳米颗粒降解环丙沙星。TiO2纳米粒子的性能受光源、pH溶剂、光照时间和TiO2纳米粒子质量等环境的影响。采用紫外-可见分光光度计对环丙沙星的残留量进行测定。二氧化钛纳米颗粒对环丙沙星降解产物的毒性试验。采用液相色谱-质谱法测定TiO2纳米颗粒降解环丙沙星产物的类型。TiO2纳米颗粒降解环丙沙星的最佳条件为:在白汞紫外灯下,溶液pH为5.5,溶液中TiO2纳米颗粒的浓度为50 mg,光照时间为5小时。TiO2纳米颗粒降解环丙沙星的产物毒性较低。用m/z鉴定出的最小降解产物是对氟苯胺(m/z 111)。版权所有©2021作者,BCREC集团出版。这是一篇基于CC BY-SA许可(https://creativecommons.org/licenses/by-sa/4.0)的开放获取文章。
{"title":"Degradation of Ciprofloxacin by Titanium Dioxide (TiO2) Nanoparticles: Optimization of Conditions, Toxicity, and Degradation Pathway","authors":"M. Usman, Azmi Prasasti, Sovia Islamiah, A. N. Firdaus, Ayu Wanda Marita, Syamsiyatul Fajriyah, A. Noviyanti, D. Eddy","doi":"10.9767/bcrec.16.4.11355.752-762","DOIUrl":"https://doi.org/10.9767/bcrec.16.4.11355.752-762","url":null,"abstract":"The popular use of ciprofloxacin is often irrational, so it causes environmental pollution such as resistance. The solution to overcome environmental pollution due to ciprofloxacin is degradation by using TiO2 nanoparticles. TiO2 nanoparticles performance is influenced by environment such as light source, pH solvent, duration of lighting and TiO2 nanoparticles mass. The residual levels determination of ciprofloxacin was carried out by using a UV-Vis spectrophotometer. Toxicity test of ciprofloxacin degradation products with TiO2 nanoparticles used Escherichia coli bacteria. Liquid Chromatography Mass Spectrometry (LCMS) was used to determine the type of ciprofloxacin degradation product with TiO2 nanoparticles. The optimum condition for the ciprofloxacin degradation with TiO2 nanoparticles is lighting for 5 hours by using a white mercury UV lamp and 50 mg TiO2 nanoparticles with pH solvent of 5.5. The toxicity of ciprofloxacin degradation product with TiO2 nanoparticles was low. The smallest degradation product identified with m/z was p-fluoraniline (m/z 111). Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). ","PeriodicalId":46276,"journal":{"name":"Bulletin of Chemical Reaction Engineering and Catalysis","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46194755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
French Fries-Like Bismuth Oxide: Physicochemical Properties, Electrical Conductivity and Photocatalytic Activity 类炸薯条氧化铋:理化性质、电导率和光催化活性
IF 1.5 Q3 ENGINEERING, CHEMICAL Pub Date : 2021-12-07 DOI: 10.9767/bcrec.17.1.12554.146-156
Y. Astuti, Fauzan Musthafa, Arnelli Arnelli, I. Nurhasanah
Bismuth oxide synthesis using hydrothermal method has been conducted. This study aims to examine the effect of the hydrothermal reaction time on product characteristics and photocatalytic activity in degrading methyl orange dye. Bismuth oxide synthesis was initiated by dissolving bismuth nitrate pentahydrate (Bi(NO3)3.5H2O) and Na2SO4 in a distilled water and added NaOH gradually. The solution formed was transferred into a Teflon-lined autoclave and heated at 120 °C with time variations of 8–16 h. The formation of bismuth oxide was indicated by the vibrations of the Bi−O−Bi and Bi−O groups and the crystal structure consisting of a-Bi2O3, β-Bi2O3, and g-Bi2O3. In addition, the highest photocatalytic activity can be examined through several factors, such as: content of Bi−O−Bi and Bi−OH groups, crystal structure, band gap values, morphology, and surface area, acquired as a result of the effect of hydrothermal reaction time. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
采用水热法合成了氧化铋。研究了水热反应时间对降解甲基橙染料的产物特性和光催化活性的影响。在蒸馏水中溶解五水硝酸铋(Bi(NO3)3.5H2O)和Na2SO4,并逐渐加入NaOH,引发氧化铋的合成。将形成的溶液转移到铁氟龙热压釜中,在120℃下加热8-16 h。通过Bi−O−Bi和Bi−O基团的振动以及由a- bi2o3、β-Bi2O3和g-Bi2O3组成的晶体结构来表征氧化铋的形成。此外,通过水热反应时间的影响,可以通过Bi−O−Bi和Bi−OH基团的含量、晶体结构、带隙值、形貌和表面积等因素来考察最高的光催化活性。版权所有©2021作者,BCREC集团出版。这是一篇基于CC BY-SA许可(https://creativecommons.org/licenses/by-sa/4.0)的开放获取文章。
{"title":"French Fries-Like Bismuth Oxide: Physicochemical Properties, Electrical Conductivity and Photocatalytic Activity","authors":"Y. Astuti, Fauzan Musthafa, Arnelli Arnelli, I. Nurhasanah","doi":"10.9767/bcrec.17.1.12554.146-156","DOIUrl":"https://doi.org/10.9767/bcrec.17.1.12554.146-156","url":null,"abstract":"Bismuth oxide synthesis using hydrothermal method has been conducted. This study aims to examine the effect of the hydrothermal reaction time on product characteristics and photocatalytic activity in degrading methyl orange dye. Bismuth oxide synthesis was initiated by dissolving bismuth nitrate pentahydrate (Bi(NO3)3.5H2O) and Na2SO4 in a distilled water and added NaOH gradually. The solution formed was transferred into a Teflon-lined autoclave and heated at 120 °C with time variations of 8–16 h. The formation of bismuth oxide was indicated by the vibrations of the Bi−O−Bi and Bi−O groups and the crystal structure consisting of a-Bi2O3, β-Bi2O3, and g-Bi2O3. In addition, the highest photocatalytic activity can be examined through several factors, such as: content of Bi−O−Bi and Bi−OH groups, crystal structure, band gap values, morphology, and surface area, acquired as a result of the effect of hydrothermal reaction time. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). ","PeriodicalId":46276,"journal":{"name":"Bulletin of Chemical Reaction Engineering and Catalysis","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42750148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
The Production of Green Diesel Rich Pentadecane (C15) from Catalytic Hydrodeoxygenation of Waste Cooking Oil using Ni/Al2O3-ZrO2 and Ni/SiO2-ZrO2 Ni/Al2O3-ZrO2和Ni/SiO2-ZrO2催化废食用油加氢脱氧制备富绿色柴油十五烷(C15
IF 1.5 Q3 ENGINEERING, CHEMICAL Pub Date : 2021-12-02 DOI: 10.9767/bcrec.17.1.12700.135-145
Momodou Salieu Sowe, Arda Rista Lestari, Eka Novitasari, M. Masruri, S. M. Ulfa
Hydrodeoxygenation (HDO) is applied in fuel processing technology to convert bio-oils to green diesel with metal-based catalysts. The major challenges to this process are feedstock, catalyst preparation, and the production of oxygen-free diesel fuel. In this study, we aimed to synthesize Ni catalysts supported on silica-zirconia and alumina-zirconia binary oxides and evaluated their catalytic activity for waste cooking oil (WCO) hydrodeoxygenation to green diesel. Ni/Al2O3-ZrO2 and Ni/SiO2-ZrO2 were synthesized by wet-impregnation and hydrodeoxygenation of WCO was done using a modified batch reactor. The catalysts were characterized using X-ray diffraction (XRD), X-ray fluorescence (XRF), and scanning electron microscopy - energy dispersive X-ray spectroscopy (SEM-EDS), and N2 isotherm adsorption-desorption analysis. Gas chromatography - mass spectrometry (GC-MS) analysis showed the formation of hydrocarbon framework n-C15 generated from the use of Ni/Al2O3-ZrO2 with the selectivity of 68.97% after a 2 h reaction. Prolonged reaction into 4 h, decreased the selectivity to 58.69%. Ni/SiO2-ZrO2 catalyst at 2 h showed selectivity of 55.39% to n-C15. Conversely, it was observed that the reaction for 4 h increased selectivity to 65.13%. Overall, Ni/Al2O3-ZrO2 and Ni/SiO2-ZrO2 catalysts produced oxygen-free green diesel range (n-C14-C18) enriched with n-C15 hydrocarbon. Reaction time influenced the selectivity to n-C15 hydrocarbon. Both catalysts showed promising hydrodeoxygenation activity via the hydrodecarboxylation pathway. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
氢脱氧(HDO)是一种利用金属基催化剂将生物油转化为绿色柴油的燃料加工技术。该工艺面临的主要挑战是原料、催化剂制备和无氧柴油的生产。本研究旨在合成二氧化硅-二氧化锆和氧化铝-二氧化锆二元氧化物负载的Ni催化剂,并评价其对废食用油加氢脱氧制绿色柴油的催化活性。采用湿浸渍法合成了Ni/Al2O3-ZrO2和Ni/SiO2-ZrO2,并利用改进的间歇式反应器对WCO进行了加氢脱氧。采用x射线衍射(XRD)、x射线荧光(XRF)、扫描电镜- x射线能谱(SEM-EDS)和N2等温吸附-脱附分析对催化剂进行了表征。气相色谱-质谱(GC-MS)分析表明,Ni/Al2O3-ZrO2反应2h后生成的碳氢化合物骨架n-C15的选择性为68.97%。反应时间延长至4 h,选择性降至58.69%。Ni/SiO2-ZrO2催化剂在2 h时对n-C15的选择性为55.39%。相反,反应4 h后,选择性提高到65.13%。总体而言,Ni/Al2O3-ZrO2和Ni/SiO2-ZrO2催化剂产生了富含n-C15烃的无氧绿色柴油(n-C14-C18)。反应时间影响了对n-C15烃的选择性。两种催化剂均通过加氢脱羧途径表现出良好的加氢脱氧活性。版权所有©2021作者,BCREC集团出版。这是一篇基于CC BY-SA许可(https://creativecommons.org/licenses/by-sa/4.0)的开放获取文章。
{"title":"The Production of Green Diesel Rich Pentadecane (C15) from Catalytic Hydrodeoxygenation of Waste Cooking Oil using Ni/Al2O3-ZrO2 and Ni/SiO2-ZrO2","authors":"Momodou Salieu Sowe, Arda Rista Lestari, Eka Novitasari, M. Masruri, S. M. Ulfa","doi":"10.9767/bcrec.17.1.12700.135-145","DOIUrl":"https://doi.org/10.9767/bcrec.17.1.12700.135-145","url":null,"abstract":"Hydrodeoxygenation (HDO) is applied in fuel processing technology to convert bio-oils to green diesel with metal-based catalysts. The major challenges to this process are feedstock, catalyst preparation, and the production of oxygen-free diesel fuel. In this study, we aimed to synthesize Ni catalysts supported on silica-zirconia and alumina-zirconia binary oxides and evaluated their catalytic activity for waste cooking oil (WCO) hydrodeoxygenation to green diesel. Ni/Al2O3-ZrO2 and Ni/SiO2-ZrO2 were synthesized by wet-impregnation and hydrodeoxygenation of WCO was done using a modified batch reactor. The catalysts were characterized using X-ray diffraction (XRD), X-ray fluorescence (XRF), and scanning electron microscopy - energy dispersive X-ray spectroscopy (SEM-EDS), and N2 isotherm adsorption-desorption analysis. Gas chromatography - mass spectrometry (GC-MS) analysis showed the formation of hydrocarbon framework n-C15 generated from the use of Ni/Al2O3-ZrO2 with the selectivity of 68.97% after a 2 h reaction. Prolonged reaction into 4 h, decreased the selectivity to 58.69%. Ni/SiO2-ZrO2 catalyst at 2 h showed selectivity of 55.39% to n-C15. Conversely, it was observed that the reaction for 4 h increased selectivity to 65.13%. Overall, Ni/Al2O3-ZrO2 and Ni/SiO2-ZrO2 catalysts produced oxygen-free green diesel range (n-C14-C18) enriched with n-C15 hydrocarbon. Reaction time influenced the selectivity to n-C15 hydrocarbon. Both catalysts showed promising hydrodeoxygenation activity via the hydrodecarboxylation pathway. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). ","PeriodicalId":46276,"journal":{"name":"Bulletin of Chemical Reaction Engineering and Catalysis","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41743469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Synthesis of Carbide Lime Waste Derived Base Catalyst (KF/CLW-Fe3O4) for Methyl Ester Production: An Optimization Study 碳化石石灰废渣基催化剂KF/CLW-Fe3O4合成甲酯的优化研究
IF 1.5 Q3 ENGINEERING, CHEMICAL Pub Date : 2021-11-30 DOI: 10.9767/bcrec.17.1.12348.127-134
H. Lim, F. Pua, R. Othman, Y. Taufiq-Yap, S. Krishnan
In this paper, solid base catalyst KF/CLW-Fe3O4 was prepared from carbide lime waste, primarily calcium hydroxide with tiny amounts of carbonate and; the catalyst was used in the optimization study on the methyl ester production. The new strong base catalyst was synthesized by chemical impregnation. This catalyst was characterized by Hammett indicator analysis, Brunauer, Emmett, and Teller (BET), scanning electron microscope (SEM), X-ray diffraction (XRD) and temperature-programmed desorption (TPD) of carbon dioxide. The catalyst was further used to catalyzed the transesterification reaction to produce methyl ester. Taguchi method was used to assess the impact of catalyst at different intervals of reaction parameters, including reaction time, methanol to oil ratio, and catalyst loading. A mixed level of orthogonal array design with L9, analysis of variance (ANOVA) and signal to noise ratio were used to determine parameters that significantly impact the palm oil transesterification reaction. High methyl ester conversion was attained, and the catalyst can be easily separated and reused. KF/CLW-Fe3O4 has great potential to be used to produce methyl ester because of its high catalytic activity and environmental friendliness. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
本文以碳化石石灰废渣为原料,以氢氧化钙为主要原料,加入少量碳酸钙和碳酸钙,制备了固体碱催化剂KF/CLW-Fe3O4;将该催化剂用于甲酯生产的优化研究。采用化学浸渍法制备了新型强碱催化剂。采用Hammett指示剂分析、Brunauer, Emmett, and Teller (BET)、扫描电镜(SEM)、x射线衍射(XRD)和程序升温解吸(TPD)对催化剂进行了表征。进一步用该催化剂催化酯交换反应生成甲酯。采用田口法评价催化剂在不同反应时间间隔、甲醇油比、催化剂负载等参数下的影响。采用混合水平正交设计(L9)、方差分析(ANOVA)和信噪比来确定影响棕榈油酯交换反应的参数。该催化剂的甲酯转化率高,易于分离和重复使用。KF/CLW-Fe3O4具有较高的催化活性和环境友好性,在生产甲酯方面具有很大的潜力。版权所有©2021作者,BCREC集团出版。这是一篇基于CC BY-SA许可(https://creativecommons.org/licenses/by-sa/4.0)的开放获取文章。
{"title":"Synthesis of Carbide Lime Waste Derived Base Catalyst (KF/CLW-Fe3O4) for Methyl Ester Production: An Optimization Study","authors":"H. Lim, F. Pua, R. Othman, Y. Taufiq-Yap, S. Krishnan","doi":"10.9767/bcrec.17.1.12348.127-134","DOIUrl":"https://doi.org/10.9767/bcrec.17.1.12348.127-134","url":null,"abstract":"In this paper, solid base catalyst KF/CLW-Fe3O4 was prepared from carbide lime waste, primarily calcium hydroxide with tiny amounts of carbonate and; the catalyst was used in the optimization study on the methyl ester production. The new strong base catalyst was synthesized by chemical impregnation. This catalyst was characterized by Hammett indicator analysis, Brunauer, Emmett, and Teller (BET), scanning electron microscope (SEM), X-ray diffraction (XRD) and temperature-programmed desorption (TPD) of carbon dioxide. The catalyst was further used to catalyzed the transesterification reaction to produce methyl ester. Taguchi method was used to assess the impact of catalyst at different intervals of reaction parameters, including reaction time, methanol to oil ratio, and catalyst loading. A mixed level of orthogonal array design with L9, analysis of variance (ANOVA) and signal to noise ratio were used to determine parameters that significantly impact the palm oil transesterification reaction. High methyl ester conversion was attained, and the catalyst can be easily separated and reused. KF/CLW-Fe3O4 has great potential to be used to produce methyl ester because of its high catalytic activity and environmental friendliness. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). ","PeriodicalId":46276,"journal":{"name":"Bulletin of Chemical Reaction Engineering and Catalysis","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48872978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Superparamagnetic Iron Oxide Decorated Indium Hydroxide Nanocomposite: Synthesis, Characterization and Its Photocatalytic Activity 超顺磁性氧化铁修饰氢氧化铟纳米复合材料的合成、表征及其光催化活性
IF 1.5 Q3 ENGINEERING, CHEMICAL Pub Date : 2021-11-29 DOI: 10.9767/bcrec.17.1.12352.113-126
C. Chong, T. Lee, J. Juan, M. Johan, C. Loke, K. Ng, J. C. Lai, T. Lim
A simple and scalable liquid-based method was developed to produce a nanocomposite photocatalyst which was comprised of Fe3O4 nanoparticles (4-5 nm) decorated indium hydroxide nanorods (mean width 33 nm and average aspect ratio 2-3). The nanocomposite was produced at 25 ℃ in water via a hydroxide-induced co-precipitation ensued by a cathodic reduction during which the non-magnetic Fe(OH)3 intermediate was reduced to magnetic Fe3O4 at 20 V within 1 h. The incorporation of Fe3O4 nanoparticles served to bestow magnetic recoverability to the photocatalyst and helped enhance visible light absorption simultaneously. Interestingly, the addition of Fe3+ led to the formation of In(OH)3 nanorods rather than the commonly observed nanocubes. In comparison to the In(OH)3 system having a band gap of 4.60 eV), the band gap of the Fe3O4/In(OH)3 nanocomposite produced was determined to be 2.85 eV using the Tauc’s plot method. The effective reduction in band gap is expected to allow better absorption of visible light which in turns should help boost its photocatalytic performance. The Fe3O4/In(OH)3 nanocomposite was structurally characterized using a combination of PXRD, FESEM, EDS, and TEM and its paramagnetic property was proven with a positive mass susceptibility measured to be 1.30´10−5 cm3.g−1. Under visible light, a photocatalytic degradation efficiency of 83% was recorded within 1 hr for the nanocomposite using methylene blue as a dye. The photocatalytically-active Fe3O4/In(OH)3 should have good potential in visible-light driven waste water degradation once further optimized. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
以Fe3O4纳米颗粒(4 ~ 5 nm)装饰氢氧化铟纳米棒(平均宽33 nm,平均长径比2 ~ 3)为材料,建立了一种简单、可扩展的液体基制备纳米复合光催化剂的方法。在25℃的水中,通过氢氧化物诱导共沉淀法制备纳米复合材料,然后进行阴极还原,在1小时内,非磁性的Fe(OH)3中间体在20 V的电压下被还原为磁性的Fe3O4。Fe3O4纳米颗粒的掺入使光催化剂具有磁性可恢复性,同时有助于增强可见光吸收。有趣的是,Fe3+的加入导致形成In(OH)3纳米棒,而不是通常观察到的纳米立方体。与带隙为4.60 eV的In(OH)3相比,采用Tauc图法确定了Fe3O4/In(OH)3纳米复合材料的带隙为2.85 eV。有效减小带隙有望更好地吸收可见光,从而有助于提高其光催化性能。采用PXRD、FESEM、EDS和TEM对Fe3O4/In(OH)3纳米复合材料进行了结构表征,证实了其顺磁性,质量磁化率为1.30´10−5 cm3.g−1。在可见光下,以亚甲基蓝为染料的纳米复合材料在1小时内的光催化降解效率为83%。光催化活性Fe3O4/In(OH)3在可见光驱动的废水降解中具有良好的潜力。版权所有©2021作者,BCREC集团出版。这是一篇基于CC BY-SA许可(https://creativecommons.org/licenses/by-sa/4.0)的开放获取文章。
{"title":"Superparamagnetic Iron Oxide Decorated Indium Hydroxide Nanocomposite: Synthesis, Characterization and Its Photocatalytic Activity","authors":"C. Chong, T. Lee, J. Juan, M. Johan, C. Loke, K. Ng, J. C. Lai, T. Lim","doi":"10.9767/bcrec.17.1.12352.113-126","DOIUrl":"https://doi.org/10.9767/bcrec.17.1.12352.113-126","url":null,"abstract":"A simple and scalable liquid-based method was developed to produce a nanocomposite photocatalyst which was comprised of Fe3O4 nanoparticles (4-5 nm) decorated indium hydroxide nanorods (mean width 33 nm and average aspect ratio 2-3). The nanocomposite was produced at 25 ℃ in water via a hydroxide-induced co-precipitation ensued by a cathodic reduction during which the non-magnetic Fe(OH)3 intermediate was reduced to magnetic Fe3O4 at 20 V within 1 h. The incorporation of Fe3O4 nanoparticles served to bestow magnetic recoverability to the photocatalyst and helped enhance visible light absorption simultaneously. Interestingly, the addition of Fe3+ led to the formation of In(OH)3 nanorods rather than the commonly observed nanocubes. In comparison to the In(OH)3 system having a band gap of 4.60 eV), the band gap of the Fe3O4/In(OH)3 nanocomposite produced was determined to be 2.85 eV using the Tauc’s plot method. The effective reduction in band gap is expected to allow better absorption of visible light which in turns should help boost its photocatalytic performance. The Fe3O4/In(OH)3 nanocomposite was structurally characterized using a combination of PXRD, FESEM, EDS, and TEM and its paramagnetic property was proven with a positive mass susceptibility measured to be 1.30´10−5 cm3.g−1. Under visible light, a photocatalytic degradation efficiency of 83% was recorded within 1 hr for the nanocomposite using methylene blue as a dye. The photocatalytically-active Fe3O4/In(OH)3 should have good potential in visible-light driven waste water degradation once further optimized. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). ","PeriodicalId":46276,"journal":{"name":"Bulletin of Chemical Reaction Engineering and Catalysis","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47394206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Synthesis of Porous N-doped TiO2 by Using Peroxo Sol-Gel Method for Photocatalytic Reduction of Cd(II) 光催化还原Cd(II)的过氧溶胶-凝胶法合成多孔N掺杂TiO2
IF 1.5 Q3 ENGINEERING, CHEMICAL Pub Date : 2021-11-27 DOI: 10.9767/bcrec.17.1.12347.103-112
D. V. Wellia, Dina Nofebriani, Nurul Pratiwi, Safni Safni
Porous N-doped TiO2 photocatalyst was successfully synthesized by an environmentally friendly peroxo sol-gel method using polyethylene glycol (PEG) as a templating agent. Here, the effect of PEG addition to the aqueous peroxotitanium solutions on the structure, pore properties and photocatalytic activity of the obtained photocatalysts was systematically studied. The prepared photocatalysts were characterized by X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), and Brunauer-Emmett-Teller (BET). It was found that the doping of nitrogen narrows the band gap of TiO2 leading to enhance its visible-light response. The BET analysis shows that the prepared photocatalysts have a typical mesoporous structure with pore sizes of 3–6 nm. The photocatalytic activity of the prepared photocatalysts was evaluated by photocatalytic reduction of Cd(II) in an aqueous solution under visible light irradiation. The results show that porous N-doped TiO2 with the optimal PEG addition had the highest Cd(II) reduction of 85.1% after 2.5 h irradiation in neutral aqueous solution. This significant improvement in photocatalytic activity of the prepared photocatalysts was mainly attributed to the synergistic combination of N doping and porous structure, which could actively increase the catalytic active site of this photocatalysts. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
以聚乙二醇(PEG)为模板剂,采用环境友好的过氧溶胶-凝胶法成功合成了多孔N掺杂TiO2光催化剂。本文系统地研究了在过氧钛水溶液中加入PEG对所获得的光催化剂的结构、孔性能和光催化活性的影响。通过X射线衍射(XRD)、UV-Vis漫反射光谱(DRS)和Brunauer-Emmett-Teller(BET)对制备的光催化剂进行了表征。研究发现,氮的掺杂使TiO2的带隙变窄,从而增强了其可见光响应。BET分析表明,制备的光催化剂具有典型的中孔结构,孔径为3-6 nm。通过在可见光照射下在水溶液中光催化还原Cd(II)来评估所制备的光催化剂的光催化活性。结果表明,在中性水溶液中照射2.5h后,添加最佳PEG的多孔N掺杂TiO2的Cd(II)还原率最高,为85.1%。所制备的光催化剂的光催化活性的显著提高主要归因于N掺杂和多孔结构的协同结合,这可以积极增加该光催化剂的催化活性位点。版权所有©2021作者所有,BCREC集团出版。这是CC BY-SA许可证下的开放访问文章(https://creativecommons.org/licenses/by-sa/4.0)。
{"title":"Synthesis of Porous N-doped TiO2 by Using Peroxo Sol-Gel Method for Photocatalytic Reduction of Cd(II)","authors":"D. V. Wellia, Dina Nofebriani, Nurul Pratiwi, Safni Safni","doi":"10.9767/bcrec.17.1.12347.103-112","DOIUrl":"https://doi.org/10.9767/bcrec.17.1.12347.103-112","url":null,"abstract":"Porous N-doped TiO2 photocatalyst was successfully synthesized by an environmentally friendly peroxo sol-gel method using polyethylene glycol (PEG) as a templating agent. Here, the effect of PEG addition to the aqueous peroxotitanium solutions on the structure, pore properties and photocatalytic activity of the obtained photocatalysts was systematically studied. The prepared photocatalysts were characterized by X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), and Brunauer-Emmett-Teller (BET). It was found that the doping of nitrogen narrows the band gap of TiO2 leading to enhance its visible-light response. The BET analysis shows that the prepared photocatalysts have a typical mesoporous structure with pore sizes of 3–6 nm. The photocatalytic activity of the prepared photocatalysts was evaluated by photocatalytic reduction of Cd(II) in an aqueous solution under visible light irradiation. The results show that porous N-doped TiO2 with the optimal PEG addition had the highest Cd(II) reduction of 85.1% after 2.5 h irradiation in neutral aqueous solution. This significant improvement in photocatalytic activity of the prepared photocatalysts was mainly attributed to the synergistic combination of N doping and porous structure, which could actively increase the catalytic active site of this photocatalysts. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). ","PeriodicalId":46276,"journal":{"name":"Bulletin of Chemical Reaction Engineering and Catalysis","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43209241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
Bulletin of Chemical Reaction Engineering and Catalysis
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1