D. Pistone, A. Italiano, L. Auditore, E. Amato, A. Campenní, S. Baldari
{"title":"90 Y TARE计划中的蒙特卡罗剂量学:模拟参数和图像重采样对剂量学精度和计算时间优化的影响","authors":"D. Pistone, A. Italiano, L. Auditore, E. Amato, A. Campenní, S. Baldari","doi":"10.1478/AAPP.992A4","DOIUrl":null,"url":null,"abstract":"Direct Monte Carlo (MC) simulation is considered the gold standard approach for internal dosimetry in nuclear medicine, and it is increasingly used in planning Trans-Arterial Radio-Embolization (TARE) of HepatoCellular Carcinoma (HCC) {and hepatic metastases}. However its computational times, longer with respect to other simplified approaches, constitute a limiting factor, especially when dealing with {large size and finely discretized voxelized volumes}. Aim of this work was the investigation of the influence of cuts on the production of secondary particles and of input CT images resamplings on dosimetric accuracy and computational time in patient-specific voxel-level MC simulations of 90 Y-labelled glass microspheres TARE treatment, to find optimal combinations of settings for speeding up such simulations. GATE GEANT4 interface was used to perform simulations employing CT and 99m Tc SPECT as input data, examining multiple CT resolutions (via CT resamplings characterized by voxel volume factors 2, 8, and 64 with respect to native one, and a CT resampling with SPECT resolution) and production cuts (0.01 mm, 0.05 mm, 0.1 mm, 0.5 mm and some more, specific for each resampling). Increasing cut length and reducing CT resolution produces an early rapid decrease followed by a late slow decrease of simulation time as a function of this two parameters. A reduction up to 30% with respect to reference simulation time, while preserving acceptable dosimetric accuracy, was obtained. The best combination of settings among the examined ones resulted the choice of CT resampling with 8 times the native voxel volume and of 0.1-0.5 mm cut, ensuring dosimetric agreement within 1% in liver-related VOIs, while reducing simulation time to 45%.","PeriodicalId":43431,"journal":{"name":"Atti Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche Matematiche e Naturali","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"GATE Monte Carlo dosimetry in 90 Y TARE planning: influence of simulation parameters and image resampling on dosimetric accuracy and optimization of computational times\",\"authors\":\"D. Pistone, A. Italiano, L. Auditore, E. Amato, A. Campenní, S. Baldari\",\"doi\":\"10.1478/AAPP.992A4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Direct Monte Carlo (MC) simulation is considered the gold standard approach for internal dosimetry in nuclear medicine, and it is increasingly used in planning Trans-Arterial Radio-Embolization (TARE) of HepatoCellular Carcinoma (HCC) {and hepatic metastases}. However its computational times, longer with respect to other simplified approaches, constitute a limiting factor, especially when dealing with {large size and finely discretized voxelized volumes}. Aim of this work was the investigation of the influence of cuts on the production of secondary particles and of input CT images resamplings on dosimetric accuracy and computational time in patient-specific voxel-level MC simulations of 90 Y-labelled glass microspheres TARE treatment, to find optimal combinations of settings for speeding up such simulations. GATE GEANT4 interface was used to perform simulations employing CT and 99m Tc SPECT as input data, examining multiple CT resolutions (via CT resamplings characterized by voxel volume factors 2, 8, and 64 with respect to native one, and a CT resampling with SPECT resolution) and production cuts (0.01 mm, 0.05 mm, 0.1 mm, 0.5 mm and some more, specific for each resampling). Increasing cut length and reducing CT resolution produces an early rapid decrease followed by a late slow decrease of simulation time as a function of this two parameters. A reduction up to 30% with respect to reference simulation time, while preserving acceptable dosimetric accuracy, was obtained. The best combination of settings among the examined ones resulted the choice of CT resampling with 8 times the native voxel volume and of 0.1-0.5 mm cut, ensuring dosimetric agreement within 1% in liver-related VOIs, while reducing simulation time to 45%.\",\"PeriodicalId\":43431,\"journal\":{\"name\":\"Atti Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche Matematiche e Naturali\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atti Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche Matematiche e Naturali\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1478/AAPP.992A4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atti Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche Matematiche e Naturali","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1478/AAPP.992A4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
GATE Monte Carlo dosimetry in 90 Y TARE planning: influence of simulation parameters and image resampling on dosimetric accuracy and optimization of computational times
Direct Monte Carlo (MC) simulation is considered the gold standard approach for internal dosimetry in nuclear medicine, and it is increasingly used in planning Trans-Arterial Radio-Embolization (TARE) of HepatoCellular Carcinoma (HCC) {and hepatic metastases}. However its computational times, longer with respect to other simplified approaches, constitute a limiting factor, especially when dealing with {large size and finely discretized voxelized volumes}. Aim of this work was the investigation of the influence of cuts on the production of secondary particles and of input CT images resamplings on dosimetric accuracy and computational time in patient-specific voxel-level MC simulations of 90 Y-labelled glass microspheres TARE treatment, to find optimal combinations of settings for speeding up such simulations. GATE GEANT4 interface was used to perform simulations employing CT and 99m Tc SPECT as input data, examining multiple CT resolutions (via CT resamplings characterized by voxel volume factors 2, 8, and 64 with respect to native one, and a CT resampling with SPECT resolution) and production cuts (0.01 mm, 0.05 mm, 0.1 mm, 0.5 mm and some more, specific for each resampling). Increasing cut length and reducing CT resolution produces an early rapid decrease followed by a late slow decrease of simulation time as a function of this two parameters. A reduction up to 30% with respect to reference simulation time, while preserving acceptable dosimetric accuracy, was obtained. The best combination of settings among the examined ones resulted the choice of CT resampling with 8 times the native voxel volume and of 0.1-0.5 mm cut, ensuring dosimetric agreement within 1% in liver-related VOIs, while reducing simulation time to 45%.
期刊介绍:
This journal is of a multi- and inter-disciplinary nature and covers a broad range of fields including mathematics, computer science, physics, chemistry, biology, earth sciences, and their intersection. History of science is also included within the topics addressed by the journal. The transactions of the Pelorian Academy started out as periodic news sheets containing the notes presented by the members of the Divisions into which the Academy has been and still is organized, according to subject areas. The publication of these notes for the Division (“Classe”) of Mathematical, Physical and Natural Sciences is the responsibility of the Editorial Committee, which is composed of the Director of the division with the role of Chairman, the Vice-Director, the Secretary and two or more other members. Besides original research articles, the journal also accepts texts from conferences and invited talks held in the Academy. These contributions are published in a different section of the journal. In addition to the regular issues, single monographic supplements are occasionally published which assemble reports and communications presented at congresses, symposia, seminars, study meetings and other scientific events organized by the Academy or under its patronage. Since 2004 these transactions have been published online in the form of an open access electronic journal.