{"title":"无脊椎动物模型生物作为研究罕见人类神经系统疾病的平台","authors":"Ji-Hye Lee","doi":"10.5607/en22003","DOIUrl":null,"url":null,"abstract":"Patients suffering from rare human diseases often go through a painful journey for finding a definite molecular diagnosis prerequisite of appropriate cures. With a novel variant isolated from a single patient, determination of its pathogenicity to end such “diagnostic odyssey” requires multi-step processes involving experts in diverse areas of interest, including clinicians, bioinformaticians and research scientists. Recent efforts in building large-scale genomic databases and in silico prediction platforms have facilitated identification of potentially pathogenic variants causative of rare human diseases of a Mendelian basis. However, the functional significance of individual variants remains elusive in many cases, thus requiring incorporation of versatile and rapid model organism (MO)-based platforms for functional analyses. In this review, the current scope of rare disease research is briefly discussed. In addition, an overview of invertebrate MOs for their key features relevant to rare neurological diseases is provided, with the characteristics of two representative invertebrate MOs, Drosophila melanogaster and Caenorhabditis elegans, as well as the challenges against them. Finally, recently developed research networks integrating these MOs in collaborative research are portraited with an array of bioinformatical analyses embedded. A comprehensive survey of MO-based research activities provided in this review will help us to design a well-structured analysis of candidate genes or potentially pathogenic variants for their roles in rare neurological diseases in future.","PeriodicalId":12263,"journal":{"name":"Experimental Neurobiology","volume":"31 1","pages":"1 - 16"},"PeriodicalIF":1.8000,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Invertebrate Model Organisms as a Platform to Investigate Rare Human Neurological Diseases\",\"authors\":\"Ji-Hye Lee\",\"doi\":\"10.5607/en22003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Patients suffering from rare human diseases often go through a painful journey for finding a definite molecular diagnosis prerequisite of appropriate cures. With a novel variant isolated from a single patient, determination of its pathogenicity to end such “diagnostic odyssey” requires multi-step processes involving experts in diverse areas of interest, including clinicians, bioinformaticians and research scientists. Recent efforts in building large-scale genomic databases and in silico prediction platforms have facilitated identification of potentially pathogenic variants causative of rare human diseases of a Mendelian basis. However, the functional significance of individual variants remains elusive in many cases, thus requiring incorporation of versatile and rapid model organism (MO)-based platforms for functional analyses. In this review, the current scope of rare disease research is briefly discussed. In addition, an overview of invertebrate MOs for their key features relevant to rare neurological diseases is provided, with the characteristics of two representative invertebrate MOs, Drosophila melanogaster and Caenorhabditis elegans, as well as the challenges against them. Finally, recently developed research networks integrating these MOs in collaborative research are portraited with an array of bioinformatical analyses embedded. A comprehensive survey of MO-based research activities provided in this review will help us to design a well-structured analysis of candidate genes or potentially pathogenic variants for their roles in rare neurological diseases in future.\",\"PeriodicalId\":12263,\"journal\":{\"name\":\"Experimental Neurobiology\",\"volume\":\"31 1\",\"pages\":\"1 - 16\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.5607/en22003\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5607/en22003","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Invertebrate Model Organisms as a Platform to Investigate Rare Human Neurological Diseases
Patients suffering from rare human diseases often go through a painful journey for finding a definite molecular diagnosis prerequisite of appropriate cures. With a novel variant isolated from a single patient, determination of its pathogenicity to end such “diagnostic odyssey” requires multi-step processes involving experts in diverse areas of interest, including clinicians, bioinformaticians and research scientists. Recent efforts in building large-scale genomic databases and in silico prediction platforms have facilitated identification of potentially pathogenic variants causative of rare human diseases of a Mendelian basis. However, the functional significance of individual variants remains elusive in many cases, thus requiring incorporation of versatile and rapid model organism (MO)-based platforms for functional analyses. In this review, the current scope of rare disease research is briefly discussed. In addition, an overview of invertebrate MOs for their key features relevant to rare neurological diseases is provided, with the characteristics of two representative invertebrate MOs, Drosophila melanogaster and Caenorhabditis elegans, as well as the challenges against them. Finally, recently developed research networks integrating these MOs in collaborative research are portraited with an array of bioinformatical analyses embedded. A comprehensive survey of MO-based research activities provided in this review will help us to design a well-structured analysis of candidate genes or potentially pathogenic variants for their roles in rare neurological diseases in future.
期刊介绍:
Experimental Neurobiology is an international forum for interdisciplinary investigations of the nervous system. The journal aims to publish papers that present novel observations in all fields of neuroscience, encompassing cellular & molecular neuroscience, development/differentiation/plasticity, neurobiology of disease, systems/cognitive/behavioral neuroscience, drug development & industrial application, brain-machine interface, methodologies/tools, and clinical neuroscience. It should be of interest to a broad scientific audience working on the biochemical, molecular biological, cell biological, pharmacological, physiological, psychophysical, clinical, anatomical, cognitive, and biotechnological aspects of neuroscience. The journal publishes both original research articles and review articles. Experimental Neurobiology is an open access, peer-reviewed online journal. The journal is published jointly by The Korean Society for Brain and Neural Sciences & The Korean Society for Neurodegenerative Disease.