饮用水和盐水浸泡后全尺寸定向刨花板的强度特性

IF 1.1 4区 农林科学 Q3 FORESTRY Forest Products Journal Pub Date : 2022-01-01 DOI:10.13073/fpj-d-21-00058
T. Strayhorn, Phil Mitchell, D. Tilotta
{"title":"饮用水和盐水浸泡后全尺寸定向刨花板的强度特性","authors":"T. Strayhorn, Phil Mitchell, D. Tilotta","doi":"10.13073/fpj-d-21-00058","DOIUrl":null,"url":null,"abstract":"\n One of the largest contributors to the economic loss from floods is the complete or partial destruction of residential buildings, and finding ways to eliminate or minimize this loss is important. Oriented strand board (OSB) is a wood product commonly used in home construction, so a better understanding of how flood water affects its mechanical properties is warranted. In this study, the moduli of elasticity and rupture (MOE and MOR, respectively) of representative samples removed from full-size (4 by 8-ft [1.2 by 2.4 m]) OSB panels were examined following the submergence of the panels in potable and salt water (surrogates for flood water) for increasing periods of time (i.e., 8, 24, 48, 72, 168, and 336 h). The results of our study show that after 8 hours of panel submersion in potable water, MOR and MOE is reduced by 15 percent and 16 percent, respectively; no significant change was observed in MOR and MOE for panels soaked in salt water. After 168 hours, the MOR loss was 43 percent for panels soaked in potable water and 38 percent for panels soaked in salt water. For MOE, there was a 35 percent loss regardless of water type. Submersion of panels in either water type for an additional 168 hours resulted in no significant change in MOR or MOE. The MOR and MOE of samples removed from the edges of the submerged panels, for both water types, were lower than those of the interior samples. Finally, the decreases in average MOR and MOE following submergence in either water type were approximately independent of brand.","PeriodicalId":12387,"journal":{"name":"Forest Products Journal","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strength Properties of Full-Size Oriented Strand Board Panels Following Submergence in Potable and Salt Water\",\"authors\":\"T. Strayhorn, Phil Mitchell, D. Tilotta\",\"doi\":\"10.13073/fpj-d-21-00058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n One of the largest contributors to the economic loss from floods is the complete or partial destruction of residential buildings, and finding ways to eliminate or minimize this loss is important. Oriented strand board (OSB) is a wood product commonly used in home construction, so a better understanding of how flood water affects its mechanical properties is warranted. In this study, the moduli of elasticity and rupture (MOE and MOR, respectively) of representative samples removed from full-size (4 by 8-ft [1.2 by 2.4 m]) OSB panels were examined following the submergence of the panels in potable and salt water (surrogates for flood water) for increasing periods of time (i.e., 8, 24, 48, 72, 168, and 336 h). The results of our study show that after 8 hours of panel submersion in potable water, MOR and MOE is reduced by 15 percent and 16 percent, respectively; no significant change was observed in MOR and MOE for panels soaked in salt water. After 168 hours, the MOR loss was 43 percent for panels soaked in potable water and 38 percent for panels soaked in salt water. For MOE, there was a 35 percent loss regardless of water type. Submersion of panels in either water type for an additional 168 hours resulted in no significant change in MOR or MOE. The MOR and MOE of samples removed from the edges of the submerged panels, for both water types, were lower than those of the interior samples. Finally, the decreases in average MOR and MOE following submergence in either water type were approximately independent of brand.\",\"PeriodicalId\":12387,\"journal\":{\"name\":\"Forest Products Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forest Products Journal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.13073/fpj-d-21-00058\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forest Products Journal","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.13073/fpj-d-21-00058","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

摘要

洪水造成经济损失的最大原因之一是住宅楼的全部或部分被毁,找到消除或最大限度减少这种损失的方法很重要。定向刨花板(OSB)是一种常用于家庭建筑的木制品,因此有必要更好地了解洪水如何影响其机械性能。在本研究中,从全尺寸(4×8英尺[1.2×2.4米])OSB面板中取出的代表性样品的弹性模量和断裂模量(分别为MOE和MOR)在面板浸入饮用水和盐水(代替洪水)中的时间增加后(即8、24、48、72、168和336小时)进行了检查。我们的研究结果表明,面板在饮用水中浸泡8小时后,MOR和MOE分别降低了15%和16%;浸泡在盐水中的面板的MOR和MOE没有观察到显著变化。168小时后,浸泡在饮用水中的面板的MOR损失为43%,浸泡在盐水中的面板的损失为38%。对于MOE,无论水类型如何,都有35%的损失。面板在任何一种水中再浸泡168小时都不会导致MOR或MOE发生显著变化。对于两种水类型,从水下面板边缘移除的样品的MOR和MOE都低于内部样品的MOR。最后,在任何一种水中浸泡后,平均MOR和MOE的下降几乎与品牌无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Strength Properties of Full-Size Oriented Strand Board Panels Following Submergence in Potable and Salt Water
One of the largest contributors to the economic loss from floods is the complete or partial destruction of residential buildings, and finding ways to eliminate or minimize this loss is important. Oriented strand board (OSB) is a wood product commonly used in home construction, so a better understanding of how flood water affects its mechanical properties is warranted. In this study, the moduli of elasticity and rupture (MOE and MOR, respectively) of representative samples removed from full-size (4 by 8-ft [1.2 by 2.4 m]) OSB panels were examined following the submergence of the panels in potable and salt water (surrogates for flood water) for increasing periods of time (i.e., 8, 24, 48, 72, 168, and 336 h). The results of our study show that after 8 hours of panel submersion in potable water, MOR and MOE is reduced by 15 percent and 16 percent, respectively; no significant change was observed in MOR and MOE for panels soaked in salt water. After 168 hours, the MOR loss was 43 percent for panels soaked in potable water and 38 percent for panels soaked in salt water. For MOE, there was a 35 percent loss regardless of water type. Submersion of panels in either water type for an additional 168 hours resulted in no significant change in MOR or MOE. The MOR and MOE of samples removed from the edges of the submerged panels, for both water types, were lower than those of the interior samples. Finally, the decreases in average MOR and MOE following submergence in either water type were approximately independent of brand.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forest Products Journal
Forest Products Journal 工程技术-材料科学:纸与木材
CiteScore
2.10
自引率
11.10%
发文量
30
审稿时长
6-12 weeks
期刊介绍: Forest Products Journal (FPJ) is the source of information for industry leaders, researchers, teachers, students, and everyone interested in today''s forest products industry. The Forest Products Journal is well respected for publishing high-quality peer-reviewed technical research findings at the applied or practical level that reflect the current state of wood science and technology. Articles suitable as Technical Notes are brief notes (generally 1,200 words or less) that describe new or improved equipment or techniques; report on findings produced as by-products of major studies; or outline progress to date on long-term projects.
期刊最新文献
Validating LORCAT, the Log Recovery Analysis Tool Chinese Consumers’ Attitudes Toward Certified Wood Products Design and Evaluation of a Shear Analogy Tool for Custom Cross-Laminated Timber (CLT) Panels Made from Various Wood Species Use and Future Development of Optical Measurement Technology in the Study of Wood Surface Roughness CiteSpace-Based Scientometric Analysis (2003 through 2022) Impact of Growth Characteristics on Properties of 2 by 8 Southern Yellow Pine Structural Lumber
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1