Marie-Eve Di Raddo , Marija Milenkovic , Meenalochani Sivasubramanian , Ahmed Hasbi , Jack Bergman , Sarah Withey , Bertha K. Madras , Susan R. George
{"title":"Δ9-四氢大麻酚不像成年人那样上调青少年大脑中令人厌恶的多巴胺受体机制","authors":"Marie-Eve Di Raddo , Marija Milenkovic , Meenalochani Sivasubramanian , Ahmed Hasbi , Jack Bergman , Sarah Withey , Bertha K. Madras , Susan R. George","doi":"10.1016/j.crneur.2023.100107","DOIUrl":null,"url":null,"abstract":"<div><p>Earlier age of cannabis usage poses higher risk of Cannabis Use Disorder and adverse consequences, such as addiction, anxiety, dysphoria, psychosis, largely attributed to its principal psychoactive component, Δ9-tetrahydrocannabinol (THC) and altered dopaminergic function. As dopamine D1-D2 receptor heteromer activation causes anxiety and anhedonia, this signaling complex was postulated to contribute to THC-induced affective symptoms. To investigate this, we administered THC repeatedly to adolescent monkeys and adolescent or adult rats. Drug-naïve adolescent rat had lower striatal densities of D1-D2 heteromer compared to adult rat. Repeated administration of THC to adolescent rat or adolescent monkey did not alter D1-D2 heteromer expression in nucleus accumbens or dorsal striatum but upregulated it in adult rat. Behaviourally, THC-treated adult, but not adolescent rat manifested anxiety and anhedonia-like behaviour, with elevated composite negative emotionality scores that correlated with striatal D1-D2 density. THC modified downstream markers of D1-D2 activation in adult, but not adolescent striatum. THC administered with cannabidiol did not alter D1-D2 expression. In adult rat, co-administration of CB1 receptor (CB1R) inverse agonist with THC attenuated D1-D2 upregulation, implicating cannabinoids in the regulation of striatal D1-D2 heteromer expression. THC exposure revealed an adaptable age-specific, anxiogenic, anti-reward mechanism operant in adult striatum but deficient in adolescent rat and monkey striatum that may confer increased sensitivity to THC reward in adolescence while limiting its negative effects, thus promoting continued use and increasing vulnerability to long-term adverse cannabis effects.</p></div>","PeriodicalId":72752,"journal":{"name":"Current research in neurobiology","volume":"5 ","pages":"Article 100107"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Δ9-Tetrahydrocannabinol does not upregulate an aversive dopamine receptor mechanism in adolescent brain unlike in adults\",\"authors\":\"Marie-Eve Di Raddo , Marija Milenkovic , Meenalochani Sivasubramanian , Ahmed Hasbi , Jack Bergman , Sarah Withey , Bertha K. Madras , Susan R. George\",\"doi\":\"10.1016/j.crneur.2023.100107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Earlier age of cannabis usage poses higher risk of Cannabis Use Disorder and adverse consequences, such as addiction, anxiety, dysphoria, psychosis, largely attributed to its principal psychoactive component, Δ9-tetrahydrocannabinol (THC) and altered dopaminergic function. As dopamine D1-D2 receptor heteromer activation causes anxiety and anhedonia, this signaling complex was postulated to contribute to THC-induced affective symptoms. To investigate this, we administered THC repeatedly to adolescent monkeys and adolescent or adult rats. Drug-naïve adolescent rat had lower striatal densities of D1-D2 heteromer compared to adult rat. Repeated administration of THC to adolescent rat or adolescent monkey did not alter D1-D2 heteromer expression in nucleus accumbens or dorsal striatum but upregulated it in adult rat. Behaviourally, THC-treated adult, but not adolescent rat manifested anxiety and anhedonia-like behaviour, with elevated composite negative emotionality scores that correlated with striatal D1-D2 density. THC modified downstream markers of D1-D2 activation in adult, but not adolescent striatum. THC administered with cannabidiol did not alter D1-D2 expression. In adult rat, co-administration of CB1 receptor (CB1R) inverse agonist with THC attenuated D1-D2 upregulation, implicating cannabinoids in the regulation of striatal D1-D2 heteromer expression. THC exposure revealed an adaptable age-specific, anxiogenic, anti-reward mechanism operant in adult striatum but deficient in adolescent rat and monkey striatum that may confer increased sensitivity to THC reward in adolescence while limiting its negative effects, thus promoting continued use and increasing vulnerability to long-term adverse cannabis effects.</p></div>\",\"PeriodicalId\":72752,\"journal\":{\"name\":\"Current research in neurobiology\",\"volume\":\"5 \",\"pages\":\"Article 100107\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current research in neurobiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665945X23000359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current research in neurobiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665945X23000359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Δ9-Tetrahydrocannabinol does not upregulate an aversive dopamine receptor mechanism in adolescent brain unlike in adults
Earlier age of cannabis usage poses higher risk of Cannabis Use Disorder and adverse consequences, such as addiction, anxiety, dysphoria, psychosis, largely attributed to its principal psychoactive component, Δ9-tetrahydrocannabinol (THC) and altered dopaminergic function. As dopamine D1-D2 receptor heteromer activation causes anxiety and anhedonia, this signaling complex was postulated to contribute to THC-induced affective symptoms. To investigate this, we administered THC repeatedly to adolescent monkeys and adolescent or adult rats. Drug-naïve adolescent rat had lower striatal densities of D1-D2 heteromer compared to adult rat. Repeated administration of THC to adolescent rat or adolescent monkey did not alter D1-D2 heteromer expression in nucleus accumbens or dorsal striatum but upregulated it in adult rat. Behaviourally, THC-treated adult, but not adolescent rat manifested anxiety and anhedonia-like behaviour, with elevated composite negative emotionality scores that correlated with striatal D1-D2 density. THC modified downstream markers of D1-D2 activation in adult, but not adolescent striatum. THC administered with cannabidiol did not alter D1-D2 expression. In adult rat, co-administration of CB1 receptor (CB1R) inverse agonist with THC attenuated D1-D2 upregulation, implicating cannabinoids in the regulation of striatal D1-D2 heteromer expression. THC exposure revealed an adaptable age-specific, anxiogenic, anti-reward mechanism operant in adult striatum but deficient in adolescent rat and monkey striatum that may confer increased sensitivity to THC reward in adolescence while limiting its negative effects, thus promoting continued use and increasing vulnerability to long-term adverse cannabis effects.