三维集成电路中可调谐多波段红外吸收器的石墨烯-硅-银VLSI互连的数值研究

IF 1.1 4区 物理与天体物理 Q4 NANOSCIENCE & NANOTECHNOLOGY Journal of Nanophotonics Pub Date : 2023-01-01 DOI:10.1117/1.JNP.17.016008
Sivakumar Sabapathy Arumugam
{"title":"三维集成电路中可调谐多波段红外吸收器的石墨烯-硅-银VLSI互连的数值研究","authors":"Sivakumar Sabapathy Arumugam","doi":"10.1117/1.JNP.17.016008","DOIUrl":null,"url":null,"abstract":"Abstract. We propose the multilayer silver-silica-graphene-based very large-scale integration interconnects assisted by a tunable perfect absorption structure over the infrared frequency spectrum of the third window of the optical communication for three-dimensional (3D) integrated circuits (ICs). This absorber is numerically investigated for the different cylindrical silver resonator-based squared geometries. The overall structure is investigated for the wavelength range of 1.4 to 1.6  μm over the infrared spectrum. The adjustable behavior of the absorption spectrum is observed when this structure is studied for various chemical potentials of the graphene sheet. We also present the electric and magnetic field intensity for the nearly perfect absorption conditions to identify the effect of energy concentration over different pixel structures and wavelengths. We also showcased the possible fabrication process for the proposed numerical investigation analysis. Resonator height and width have also been simulated numerically to find the resonance shift in the absorber. The adaptable behavior of the suggested structure has potential applications in a wide range of scientific fields, including biosensors, solar absorbers, optical communication, and the fabrication of 3D ICs. Simulations are performed using the COMSOL Multiphysics software module","PeriodicalId":16449,"journal":{"name":"Journal of Nanophotonics","volume":"17 1","pages":"016008 - 016008"},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical investigation of graphene-silica-silver based VLSI interconnects with tunable multiband infrared absorber for 3D integrated circuits\",\"authors\":\"Sivakumar Sabapathy Arumugam\",\"doi\":\"10.1117/1.JNP.17.016008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. We propose the multilayer silver-silica-graphene-based very large-scale integration interconnects assisted by a tunable perfect absorption structure over the infrared frequency spectrum of the third window of the optical communication for three-dimensional (3D) integrated circuits (ICs). This absorber is numerically investigated for the different cylindrical silver resonator-based squared geometries. The overall structure is investigated for the wavelength range of 1.4 to 1.6  μm over the infrared spectrum. The adjustable behavior of the absorption spectrum is observed when this structure is studied for various chemical potentials of the graphene sheet. We also present the electric and magnetic field intensity for the nearly perfect absorption conditions to identify the effect of energy concentration over different pixel structures and wavelengths. We also showcased the possible fabrication process for the proposed numerical investigation analysis. Resonator height and width have also been simulated numerically to find the resonance shift in the absorber. The adaptable behavior of the suggested structure has potential applications in a wide range of scientific fields, including biosensors, solar absorbers, optical communication, and the fabrication of 3D ICs. Simulations are performed using the COMSOL Multiphysics software module\",\"PeriodicalId\":16449,\"journal\":{\"name\":\"Journal of Nanophotonics\",\"volume\":\"17 1\",\"pages\":\"016008 - 016008\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JNP.17.016008\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.JNP.17.016008","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要我们提出了基于银-硅-石墨烯的多层超大规模集成互连,该互连由三维(3D)集成电路(IC)光通信的第三窗口的红外频谱上的可调谐完美吸收结构辅助。对于不同的基于正方形几何形状的圆柱形银谐振器,对该吸收器进行了数值研究。研究了1.4至1.6波长范围内的整体结构  μm。当对石墨烯片的各种化学势研究这种结构时,可以观察到吸收光谱的可调节行为。我们还提出了几乎完美吸收条件下的电场和磁场强度,以确定不同像素结构和波长上能量集中的影响。我们还展示了所提出的数值研究分析的可能制造过程。还对谐振器的高度和宽度进行了数值模拟,以找出吸收器中的谐振偏移。所提出的结构的适应性行为在广泛的科学领域具有潜在的应用,包括生物传感器、太阳能吸收器、光学通信和3D IC的制造。使用COMSOL Multiphysics软件模块进行模拟
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical investigation of graphene-silica-silver based VLSI interconnects with tunable multiband infrared absorber for 3D integrated circuits
Abstract. We propose the multilayer silver-silica-graphene-based very large-scale integration interconnects assisted by a tunable perfect absorption structure over the infrared frequency spectrum of the third window of the optical communication for three-dimensional (3D) integrated circuits (ICs). This absorber is numerically investigated for the different cylindrical silver resonator-based squared geometries. The overall structure is investigated for the wavelength range of 1.4 to 1.6  μm over the infrared spectrum. The adjustable behavior of the absorption spectrum is observed when this structure is studied for various chemical potentials of the graphene sheet. We also present the electric and magnetic field intensity for the nearly perfect absorption conditions to identify the effect of energy concentration over different pixel structures and wavelengths. We also showcased the possible fabrication process for the proposed numerical investigation analysis. Resonator height and width have also been simulated numerically to find the resonance shift in the absorber. The adaptable behavior of the suggested structure has potential applications in a wide range of scientific fields, including biosensors, solar absorbers, optical communication, and the fabrication of 3D ICs. Simulations are performed using the COMSOL Multiphysics software module
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanophotonics
Journal of Nanophotonics 工程技术-光学
CiteScore
2.60
自引率
6.70%
发文量
42
审稿时长
3 months
期刊介绍: The Journal of Nanophotonics publishes peer-reviewed papers focusing on the fabrication and application of nanostructures that facilitate the generation, propagation, manipulation, and detection of light from the infrared to the ultraviolet regimes.
期刊最新文献
Optical spin injection and detection in submonolayer InAs/GaAs nanostructures by circularly polarized photoluminescence Analysis of the Purcell effect of plasmonic supercrystal films and nanocavities made by close-packed metallic nanoparticles Fabrication of silver-decorated zinc oxide nanowire sensor in microchannels for surface-enhanced Raman spectroscopy Resilience of circular-polarization-state-sensitive reflection against morphological disorder in chiral structures Tiny hybrid modified organosilane-titanium dioxide nanocomposites with dual photonic behavior: insights for enhanced in-flow signaling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1