Jiahui Li, Dr. Liang Wang, Chunyu Pan, Prof. Bai Yang, Prof. Yunfeng Li
{"title":"用于具有自擦除和可重写能力的标签的瞬态生物大分子纳米颗粒","authors":"Jiahui Li, Dr. Liang Wang, Chunyu Pan, Prof. Bai Yang, Prof. Yunfeng Li","doi":"10.1002/syst.202200036","DOIUrl":null,"url":null,"abstract":"<p>Nature utilizes non-equilibrium self-assembly to achieve remarkable functions. Although such systems have been synthesized, this class of assembly is only sparsely explored in innovative materials with life-like functions. Here, we report transient nanoparticles driven by adenosine triphosphate and their applications on the self-erasable and rewritable security labels. We show that the lifetime of transient nanoparticles can be tuned from a few minutes to hundreds of minutes through adjusting concentrations of the components. By integrating the transient nanoparticles into hydrogels, we achieve self-erasable and rewritable labels with time- and space-encoded information encryption. Notably, a smart Morse code is implemented by programming the hydrogel labels in a spatiotemporal manner. This work provides an emerging material involving transient nanoparticles for information encryption, further accelerating the explorations of the new type information encryption materials.</p>","PeriodicalId":72566,"journal":{"name":"ChemSystemsChem","volume":"5 4","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Transient Biomacromolecular Nanoparticles for Labels with Self-Erasable and Rewritable Ability\",\"authors\":\"Jiahui Li, Dr. Liang Wang, Chunyu Pan, Prof. Bai Yang, Prof. Yunfeng Li\",\"doi\":\"10.1002/syst.202200036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nature utilizes non-equilibrium self-assembly to achieve remarkable functions. Although such systems have been synthesized, this class of assembly is only sparsely explored in innovative materials with life-like functions. Here, we report transient nanoparticles driven by adenosine triphosphate and their applications on the self-erasable and rewritable security labels. We show that the lifetime of transient nanoparticles can be tuned from a few minutes to hundreds of minutes through adjusting concentrations of the components. By integrating the transient nanoparticles into hydrogels, we achieve self-erasable and rewritable labels with time- and space-encoded information encryption. Notably, a smart Morse code is implemented by programming the hydrogel labels in a spatiotemporal manner. This work provides an emerging material involving transient nanoparticles for information encryption, further accelerating the explorations of the new type information encryption materials.</p>\",\"PeriodicalId\":72566,\"journal\":{\"name\":\"ChemSystemsChem\",\"volume\":\"5 4\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSystemsChem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/syst.202200036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSystemsChem","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/syst.202200036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Transient Biomacromolecular Nanoparticles for Labels with Self-Erasable and Rewritable Ability
Nature utilizes non-equilibrium self-assembly to achieve remarkable functions. Although such systems have been synthesized, this class of assembly is only sparsely explored in innovative materials with life-like functions. Here, we report transient nanoparticles driven by adenosine triphosphate and their applications on the self-erasable and rewritable security labels. We show that the lifetime of transient nanoparticles can be tuned from a few minutes to hundreds of minutes through adjusting concentrations of the components. By integrating the transient nanoparticles into hydrogels, we achieve self-erasable and rewritable labels with time- and space-encoded information encryption. Notably, a smart Morse code is implemented by programming the hydrogel labels in a spatiotemporal manner. This work provides an emerging material involving transient nanoparticles for information encryption, further accelerating the explorations of the new type information encryption materials.