消除对侵入性脑外科手术的需求:支架电极的潜力

N. Opie, T. Oxley
{"title":"消除对侵入性脑外科手术的需求:支架电极的潜力","authors":"N. Opie, T. Oxley","doi":"10.2217/BEM-2019-0013","DOIUrl":null,"url":null,"abstract":"Over the last decade, significant advances in brain–machine interfaces have demonstrated that people with paralysis can control assistive technology such as computers, wheelchairs and bionic arms with their minds. However, due to the invasive surgery required to access the brain and implant electrodes, to date, no device has received commercial US FDA approval, and consequently there is no existing solution to return independence and mobility for the hundreds-of-millions of people paralyzed by stroke, spinal cord injury and motor neuron disease. But there is hope. We have developed a minimally invasive brain–machine interface that can access the brain using cortical vessels which mitigates the risks associated with open brain surgery.","PeriodicalId":72364,"journal":{"name":"Bioelectronics in medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2217/BEM-2019-0013","citationCount":"3","resultStr":"{\"title\":\"Removing the need for invasive brain surgery: the potential of stent electrodes\",\"authors\":\"N. Opie, T. Oxley\",\"doi\":\"10.2217/BEM-2019-0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the last decade, significant advances in brain–machine interfaces have demonstrated that people with paralysis can control assistive technology such as computers, wheelchairs and bionic arms with their minds. However, due to the invasive surgery required to access the brain and implant electrodes, to date, no device has received commercial US FDA approval, and consequently there is no existing solution to return independence and mobility for the hundreds-of-millions of people paralyzed by stroke, spinal cord injury and motor neuron disease. But there is hope. We have developed a minimally invasive brain–machine interface that can access the brain using cortical vessels which mitigates the risks associated with open brain surgery.\",\"PeriodicalId\":72364,\"journal\":{\"name\":\"Bioelectronics in medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2217/BEM-2019-0013\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioelectronics in medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2217/BEM-2019-0013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectronics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2217/BEM-2019-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在过去的十年里,脑机接口的重大进步表明,瘫痪的人可以用他们的思想控制辅助技术,如电脑、轮椅和仿生手臂。然而,由于进入大脑和植入电极需要进行侵入性手术,迄今为止,没有任何设备获得美国FDA的商业批准,因此没有现有的解决方案可以为数亿因中风、脊髓损伤和运动神经元疾病而瘫痪的人恢复独立性和活动能力。但还是有希望的。我们已经开发了一种微创脑机接口,可以通过皮质血管进入大脑,从而降低开颅手术的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Removing the need for invasive brain surgery: the potential of stent electrodes
Over the last decade, significant advances in brain–machine interfaces have demonstrated that people with paralysis can control assistive technology such as computers, wheelchairs and bionic arms with their minds. However, due to the invasive surgery required to access the brain and implant electrodes, to date, no device has received commercial US FDA approval, and consequently there is no existing solution to return independence and mobility for the hundreds-of-millions of people paralyzed by stroke, spinal cord injury and motor neuron disease. But there is hope. We have developed a minimally invasive brain–machine interface that can access the brain using cortical vessels which mitigates the risks associated with open brain surgery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Single neuron recording: progress towards high-throughput analysis. Designing a bioelectronic treatment for Type 1 diabetes: targeted parasympathetic modulation of insulin secretion. Utilizing prosthetic technology to improve quality of life: an interview with Ranu Jung and James Abbas. What directions of improvements in electrode designs should we expect in the next 5-10 years? What impact could transcutaneous vagal nerve stimulation have on an aging population?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1