快速结晶驱动的高效相纯深蓝色Ruddlesden-Popper钙钛矿发光二极管

IF 20.6 1区 物理与天体物理 Q1 OPTICS Advanced Photonics Pub Date : 2023-01-01 DOI:10.1117/1.AP.5.1.016001
G. Jang, Hyowon Han, Sunihl Ma, Junwoo Lee, Chang Uk Lee, Woo-Yang Jeong, J. Son, Dongki Cho, Ji‐Hee Kim, Cheolmin Park, Jooho Moon
{"title":"快速结晶驱动的高效相纯深蓝色Ruddlesden-Popper钙钛矿发光二极管","authors":"G. Jang, Hyowon Han, Sunihl Ma, Junwoo Lee, Chang Uk Lee, Woo-Yang Jeong, J. Son, Dongki Cho, Ji‐Hee Kim, Cheolmin Park, Jooho Moon","doi":"10.1117/1.AP.5.1.016001","DOIUrl":null,"url":null,"abstract":"Abstract. Perovskite light-emitting diodes (PeLEDs) are considered as promising candidates for next-generation solution-processed full-color displays. However, the external quantum efficiencies (EQEs) and operational stabilities of deep-blue (<460  nm) PeLEDs still lag far behind their red and green counterparts. Herein, a rapid crystallization method based on hot-antisolvent bathing is proposed for realization of deep-blue PeLEDs. By promoting immediate removal of the precursor solvent from the wet perovskite films, development of the quasi-two-dimensional (2D) Ruddlesden–Popper perovskite (2D-RPP) crystals with n values >3 is hampered completely, so that phase-pure 2D-RPP films with bandgaps suitable for deep-blue PeLEDs can be obtained successfully. The uniquely developed rapid crystallization method also enables formation of randomly oriented 2D-RPP crystals, thereby improving the transfer and transport kinetics of the charge carriers. Thus, high-performance deep-blue PeLEDs emitting at 437 nm with a peak EQE of 0.63% are successfully demonstrated. The color coordinates are confirmed to be (0.165, 0.044), which match well with the Rec.2020 standard blue gamut and have excellent spectral stability.","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":null,"pages":null},"PeriodicalIF":20.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Rapid crystallization-driven high-efficiency phase-pure deep-blue Ruddlesden–Popper perovskite light-emitting diodes\",\"authors\":\"G. Jang, Hyowon Han, Sunihl Ma, Junwoo Lee, Chang Uk Lee, Woo-Yang Jeong, J. Son, Dongki Cho, Ji‐Hee Kim, Cheolmin Park, Jooho Moon\",\"doi\":\"10.1117/1.AP.5.1.016001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Perovskite light-emitting diodes (PeLEDs) are considered as promising candidates for next-generation solution-processed full-color displays. However, the external quantum efficiencies (EQEs) and operational stabilities of deep-blue (<460  nm) PeLEDs still lag far behind their red and green counterparts. Herein, a rapid crystallization method based on hot-antisolvent bathing is proposed for realization of deep-blue PeLEDs. By promoting immediate removal of the precursor solvent from the wet perovskite films, development of the quasi-two-dimensional (2D) Ruddlesden–Popper perovskite (2D-RPP) crystals with n values >3 is hampered completely, so that phase-pure 2D-RPP films with bandgaps suitable for deep-blue PeLEDs can be obtained successfully. The uniquely developed rapid crystallization method also enables formation of randomly oriented 2D-RPP crystals, thereby improving the transfer and transport kinetics of the charge carriers. Thus, high-performance deep-blue PeLEDs emitting at 437 nm with a peak EQE of 0.63% are successfully demonstrated. The color coordinates are confirmed to be (0.165, 0.044), which match well with the Rec.2020 standard blue gamut and have excellent spectral stability.\",\"PeriodicalId\":33241,\"journal\":{\"name\":\"Advanced Photonics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":20.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1117/1.AP.5.1.016001\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.AP.5.1.016001","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 4

摘要

摘要钙钛矿发光二极管(PeLEDs)被认为是下一代溶液处理全彩色显示器的有前途的候选者。然而,深海蓝(3)的外量子效率(EQEs)和运行稳定性完全受到阻碍,因此可以成功获得适合深海蓝pled的带隙纯相2D-RPP薄膜。独特开发的快速结晶方法还可以形成随机取向的2D-RPP晶体,从而改善载流子的转移和输运动力学。因此,成功地展示了在437 nm发射的高性能深蓝pled,峰值EQE为0.63%。确认颜色坐标为(0.165,0.044),与Rec.2020标准蓝域匹配良好,具有良好的光谱稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rapid crystallization-driven high-efficiency phase-pure deep-blue Ruddlesden–Popper perovskite light-emitting diodes
Abstract. Perovskite light-emitting diodes (PeLEDs) are considered as promising candidates for next-generation solution-processed full-color displays. However, the external quantum efficiencies (EQEs) and operational stabilities of deep-blue (<460  nm) PeLEDs still lag far behind their red and green counterparts. Herein, a rapid crystallization method based on hot-antisolvent bathing is proposed for realization of deep-blue PeLEDs. By promoting immediate removal of the precursor solvent from the wet perovskite films, development of the quasi-two-dimensional (2D) Ruddlesden–Popper perovskite (2D-RPP) crystals with n values >3 is hampered completely, so that phase-pure 2D-RPP films with bandgaps suitable for deep-blue PeLEDs can be obtained successfully. The uniquely developed rapid crystallization method also enables formation of randomly oriented 2D-RPP crystals, thereby improving the transfer and transport kinetics of the charge carriers. Thus, high-performance deep-blue PeLEDs emitting at 437 nm with a peak EQE of 0.63% are successfully demonstrated. The color coordinates are confirmed to be (0.165, 0.044), which match well with the Rec.2020 standard blue gamut and have excellent spectral stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
22.70
自引率
1.20%
发文量
49
审稿时长
18 weeks
期刊介绍: Advanced Photonics is a highly selective, open-access, international journal that publishes innovative research in all areas of optics and photonics, including fundamental and applied research. The journal publishes top-quality original papers, letters, and review articles, reflecting significant advances and breakthroughs in theoretical and experimental research and novel applications with considerable potential. The journal seeks high-quality, high-impact articles across the entire spectrum of optics, photonics, and related fields with specific emphasis on the following acceptance criteria: -New concepts in terms of fundamental research with great impact and significance -State-of-the-art technologies in terms of novel methods for important applications -Reviews of recent major advances and discoveries and state-of-the-art benchmarking. The journal also publishes news and commentaries highlighting scientific and technological discoveries, breakthroughs, and achievements in optics, photonics, and related fields.
期刊最新文献
Large-scale distributed diffractive-interference hybrid photonic chiplets Coherence entropy during propagation through complex media Authentication through residual attention-based processing of tampered optical responses Controlling the hidden parity in vectorial light with metasurfaces Observing the collapse of super-Bloch oscillations in strong-driving photonic temporal lattices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1