大豆油基聚磷酸铵改性聚氨酯泡沫的制备及其热稳定性和阻燃性能

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-09-08 DOI:10.1515/ipp-2023-4399
Xu Zhang, Zhaoqian Wang, Simiao Sun, Dehe Yuan, Yueqi Wen, Zhanpeng Su, Zhi Wang, Hua Xie
{"title":"大豆油基聚磷酸铵改性聚氨酯泡沫的制备及其热稳定性和阻燃性能","authors":"Xu Zhang, Zhaoqian Wang, Simiao Sun, Dehe Yuan, Yueqi Wen, Zhanpeng Su, Zhi Wang, Hua Xie","doi":"10.1515/ipp-2023-4399","DOIUrl":null,"url":null,"abstract":"Abstract Rigid polyurethane foams (RPUFs) were prepared using biomass soybean oil-based polyol and ammonium polyphosphate (APP) as raw materials. The effects of APP on the thermal stability and combustion performance of soybean oil-based polyol-modified RPUFs were investigated by thermogravimetric analysis, pyrolysis kinetic analysis, limiting oxygen index (LOI) test, cone calorimetry (CONE), scanning electron microscopy (SEM), and smoke density (Ds). The results showed that the modified RPUF with 20 wt% APP (RPUF-S3-20) had the lowest mass loss, the highest integrated programmed decomposition temperature and the highest activation energy. In addition, RPUF-S3-20 had the lowest Ds (30.9), the highest light transmittance (61.4 %), the lowest heat release rate (602.7 kW/m2, 506.8 MJ/m2, and 847.3 kW/m2) and the total heat release (18.3 MJ/m2, 21.4 MJ/m2, and 31.4 MJ/m2), which showed that RPUF-S3-20 had good thermal stability and flame retardant performance. The current results can provide an effective reference for the preparation of environmentally friendly RPUF by bio-based modification.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fabrication of soybean oil-based polyol modified polyurethane foam from ammonium polyphosphate and its thermal stability and flame retardant properties\",\"authors\":\"Xu Zhang, Zhaoqian Wang, Simiao Sun, Dehe Yuan, Yueqi Wen, Zhanpeng Su, Zhi Wang, Hua Xie\",\"doi\":\"10.1515/ipp-2023-4399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Rigid polyurethane foams (RPUFs) were prepared using biomass soybean oil-based polyol and ammonium polyphosphate (APP) as raw materials. The effects of APP on the thermal stability and combustion performance of soybean oil-based polyol-modified RPUFs were investigated by thermogravimetric analysis, pyrolysis kinetic analysis, limiting oxygen index (LOI) test, cone calorimetry (CONE), scanning electron microscopy (SEM), and smoke density (Ds). The results showed that the modified RPUF with 20 wt% APP (RPUF-S3-20) had the lowest mass loss, the highest integrated programmed decomposition temperature and the highest activation energy. In addition, RPUF-S3-20 had the lowest Ds (30.9), the highest light transmittance (61.4 %), the lowest heat release rate (602.7 kW/m2, 506.8 MJ/m2, and 847.3 kW/m2) and the total heat release (18.3 MJ/m2, 21.4 MJ/m2, and 31.4 MJ/m2), which showed that RPUF-S3-20 had good thermal stability and flame retardant performance. The current results can provide an effective reference for the preparation of environmentally friendly RPUF by bio-based modification.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ipp-2023-4399\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ipp-2023-4399","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

以生物质大豆油基多元醇和聚磷酸铵(APP)为原料制备硬质聚氨酯泡沫塑料。通过热重分析、热解动力学分析、极限氧指数(LOI)测试、锥量热法(cone)、扫描电镜(SEM)和烟密度(Ds)等研究了APP对大豆油基多元醇改性RPUFs热稳定性和燃烧性能的影响。结果表明,APP含量为20 wt%的改性RPUF (RPUF- s3 -20)具有最低的质量损失、最高的综合程序分解温度和最高的活化能。此外,RPUF-S3-20具有最低的Ds(30.9)、最高的透光率(61.4 %)、最低的放热率(602.7 kW/m2、506.8 MJ/m2和847.3 kW/m2)和最低的总放热率(18.3 MJ/m2、21.4 MJ/m2和31.4 MJ/m2),表明RPUF-S3-20具有良好的热稳定性和阻燃性能。本研究结果可为生物基改性制备环境友好型RPUF提供有效参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fabrication of soybean oil-based polyol modified polyurethane foam from ammonium polyphosphate and its thermal stability and flame retardant properties
Abstract Rigid polyurethane foams (RPUFs) were prepared using biomass soybean oil-based polyol and ammonium polyphosphate (APP) as raw materials. The effects of APP on the thermal stability and combustion performance of soybean oil-based polyol-modified RPUFs were investigated by thermogravimetric analysis, pyrolysis kinetic analysis, limiting oxygen index (LOI) test, cone calorimetry (CONE), scanning electron microscopy (SEM), and smoke density (Ds). The results showed that the modified RPUF with 20 wt% APP (RPUF-S3-20) had the lowest mass loss, the highest integrated programmed decomposition temperature and the highest activation energy. In addition, RPUF-S3-20 had the lowest Ds (30.9), the highest light transmittance (61.4 %), the lowest heat release rate (602.7 kW/m2, 506.8 MJ/m2, and 847.3 kW/m2) and the total heat release (18.3 MJ/m2, 21.4 MJ/m2, and 31.4 MJ/m2), which showed that RPUF-S3-20 had good thermal stability and flame retardant performance. The current results can provide an effective reference for the preparation of environmentally friendly RPUF by bio-based modification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1