Michaela Schwardt, Dennis Wilken, Daniel Köhn, Wolfgang Rabbel
{"title":"一种评估中世纪海堤内部结构的地震全波形反演方法","authors":"Michaela Schwardt, Dennis Wilken, Daniel Köhn, Wolfgang Rabbel","doi":"10.1002/arp.1910","DOIUrl":null,"url":null,"abstract":"Coastal protection in the form of dike constructions has a long history at the German North Frisian coast dating back to the High Middle Ages. As the vast majority of the dikes built prior to the devastating storm surges of the Middle Ages have been irretrievably destroyed, mostly sparse remains and only a few well preserved of these medieval dikes are found along the German North Frisian coast and within the Wadden Sea. Not all details of their construction and dimensions are yet understood. In the present case study, we investigate the historical Schardeich on the island of Pellworm in the German North Sea in a noninvasive way using shear waves (SH‐waves). For the data interpretation, we applied a combination of seismic full waveform inversion and classical seismic reflection imaging to determine the interior structure of the dike and its underlying layers at the highest possible resolution. The results obtained on land are compared with dike remains found in the tidal flats. These remains show up in marine seismic sections as characteristic reflections, which probably represent a compaction layer caused by the load of the former dike. For ground truthing, we compare the seismic results with internal dike structures found in nearby excavations. The comparison highlights that FWI is a reliable tool for near‐surface archaeological prospecting. We find that SH‐wave FWI provides decimetre‐scale velocity and density models that allow, together with the seismic reflection section, to determine distinct construction phases of the dike. The investigated dike further shows a depression at base level of about 0.75 m, which is of the same order as observed for the dike base reflections in the tidal flats. Transferring these findings to the dike remains mapped in the tidal flats, we derive a height of the former dike from 2.2 to 4.4 m.","PeriodicalId":55490,"journal":{"name":"Archaeological Prospection","volume":"30 4","pages":"493-516"},"PeriodicalIF":2.1000,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/arp.1910","citationCount":"0","resultStr":"{\"title\":\"A novel seismic full waveform inversion approach for assessing the internal structure of a medieval sea dike\",\"authors\":\"Michaela Schwardt, Dennis Wilken, Daniel Köhn, Wolfgang Rabbel\",\"doi\":\"10.1002/arp.1910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coastal protection in the form of dike constructions has a long history at the German North Frisian coast dating back to the High Middle Ages. As the vast majority of the dikes built prior to the devastating storm surges of the Middle Ages have been irretrievably destroyed, mostly sparse remains and only a few well preserved of these medieval dikes are found along the German North Frisian coast and within the Wadden Sea. Not all details of their construction and dimensions are yet understood. In the present case study, we investigate the historical Schardeich on the island of Pellworm in the German North Sea in a noninvasive way using shear waves (SH‐waves). For the data interpretation, we applied a combination of seismic full waveform inversion and classical seismic reflection imaging to determine the interior structure of the dike and its underlying layers at the highest possible resolution. The results obtained on land are compared with dike remains found in the tidal flats. These remains show up in marine seismic sections as characteristic reflections, which probably represent a compaction layer caused by the load of the former dike. For ground truthing, we compare the seismic results with internal dike structures found in nearby excavations. The comparison highlights that FWI is a reliable tool for near‐surface archaeological prospecting. We find that SH‐wave FWI provides decimetre‐scale velocity and density models that allow, together with the seismic reflection section, to determine distinct construction phases of the dike. The investigated dike further shows a depression at base level of about 0.75 m, which is of the same order as observed for the dike base reflections in the tidal flats. Transferring these findings to the dike remains mapped in the tidal flats, we derive a height of the former dike from 2.2 to 4.4 m.\",\"PeriodicalId\":55490,\"journal\":{\"name\":\"Archaeological Prospection\",\"volume\":\"30 4\",\"pages\":\"493-516\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/arp.1910\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archaeological Prospection\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/arp.1910\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ARCHAEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archaeological Prospection","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/arp.1910","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHAEOLOGY","Score":null,"Total":0}
A novel seismic full waveform inversion approach for assessing the internal structure of a medieval sea dike
Coastal protection in the form of dike constructions has a long history at the German North Frisian coast dating back to the High Middle Ages. As the vast majority of the dikes built prior to the devastating storm surges of the Middle Ages have been irretrievably destroyed, mostly sparse remains and only a few well preserved of these medieval dikes are found along the German North Frisian coast and within the Wadden Sea. Not all details of their construction and dimensions are yet understood. In the present case study, we investigate the historical Schardeich on the island of Pellworm in the German North Sea in a noninvasive way using shear waves (SH‐waves). For the data interpretation, we applied a combination of seismic full waveform inversion and classical seismic reflection imaging to determine the interior structure of the dike and its underlying layers at the highest possible resolution. The results obtained on land are compared with dike remains found in the tidal flats. These remains show up in marine seismic sections as characteristic reflections, which probably represent a compaction layer caused by the load of the former dike. For ground truthing, we compare the seismic results with internal dike structures found in nearby excavations. The comparison highlights that FWI is a reliable tool for near‐surface archaeological prospecting. We find that SH‐wave FWI provides decimetre‐scale velocity and density models that allow, together with the seismic reflection section, to determine distinct construction phases of the dike. The investigated dike further shows a depression at base level of about 0.75 m, which is of the same order as observed for the dike base reflections in the tidal flats. Transferring these findings to the dike remains mapped in the tidal flats, we derive a height of the former dike from 2.2 to 4.4 m.
期刊介绍:
The scope of the Journal will be international, covering urban, rural and marine environments and the full range of underlying geology.
The Journal will contain articles relating to the use of a wide range of propecting techniques, including remote sensing (airborne and satellite), geophysical (e.g. resistivity, magnetometry) and geochemical (e.g. organic markers, soil phosphate). Reports and field evaluations of new techniques will be welcomed.
Contributions will be encouraged on the application of relevant software, including G.I.S. analysis, to the data derived from prospection techniques and cartographic analysis of early maps.
Reports on integrated site evaluations and follow-up site investigations will be particularly encouraged.
The Journal will welcome contributions, in the form of short (field) reports, on the application of prospection techniques in support of comprehensive land-use studies.
The Journal will, as appropriate, contain book reviews, conference and meeting reviews, and software evaluation.
All papers will be subjected to peer review.