建立基线以监测未来气候变化对亚平宁中部地区周边冷杉种群的影响

IF 1.7 3区 农林科学 Q2 FORESTRY Annals of Forest Research Pub Date : 2022-02-07 DOI:10.15287/afr.2021.2281
F. Ducci, A. De Rogatis, R. Proietti, A. Curtu, M. Marchi, P. Belletti
{"title":"建立基线以监测未来气候变化对亚平宁中部地区周边冷杉种群的影响","authors":"F. Ducci, A. De Rogatis, R. Proietti, A. Curtu, M. Marchi, P. Belletti","doi":"10.15287/afr.2021.2281","DOIUrl":null,"url":null,"abstract":"Understanding tree species responses to climate change is crucial for preserving biodiversity especially in Southern Europe hot spots where Abies alba is widely spread. Three Apennine silver fir populations, Pigelleto (PIG), La Verna (LV) and Bocca Trabaria (BT), ensured gene flows in interglacial periods between the two phylogenetically different groups of northern and southern Apennines. These stands were analysed (nuclear and chloroplast SSRs) with the aim to establish a baseline for their future management in view of the expected changes. The three forests were tested for the Centre-Periphery Hypothesis (CPH) compared to forty-five Italian populations. At the same time, permanent areas were surveyed within LV and PIG on dominant (a) and dominated or natural regeneration (r) tree layers, and on age classes. In two consecutive years, spring cambial phenology activity was also weekly monitored on microcores, and critical phenology dates recorded. The stands matched CPH only partially, showing different phylogenetic history and their bridging between northern and southern groups of silver fir populations was confirmed. LV was distinct from PIG and BT. The within-population variance component was significantly high, and no narrow relatedness was observed between dominant and dominated/regeneration spatially closer trees, and genetic parameters were comparable in both layers at LV and PIG. In both stands, older age classes ensured natural regeneration. Cambium phenology was highly variable within populations, consistently to other Mediterranean conifers, and highly sensitive to local and year’s conditions and monitoring will improve population’s adaptive capacity detection. Shelterwood-system silvicultural treatments are suggested on small areas to drive the demographic and panmictic balance towards an uneven-aged more resilient structure, and iterated monitoring will help to adapt the forest management to the isotherm shift.","PeriodicalId":48954,"journal":{"name":"Annals of Forest Research","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Establishing a baseline to monitor future climate-change-effects on peripheral populations of Abies alba (Mill.) in central Apennines\",\"authors\":\"F. Ducci, A. De Rogatis, R. Proietti, A. Curtu, M. Marchi, P. Belletti\",\"doi\":\"10.15287/afr.2021.2281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding tree species responses to climate change is crucial for preserving biodiversity especially in Southern Europe hot spots where Abies alba is widely spread. Three Apennine silver fir populations, Pigelleto (PIG), La Verna (LV) and Bocca Trabaria (BT), ensured gene flows in interglacial periods between the two phylogenetically different groups of northern and southern Apennines. These stands were analysed (nuclear and chloroplast SSRs) with the aim to establish a baseline for their future management in view of the expected changes. The three forests were tested for the Centre-Periphery Hypothesis (CPH) compared to forty-five Italian populations. At the same time, permanent areas were surveyed within LV and PIG on dominant (a) and dominated or natural regeneration (r) tree layers, and on age classes. In two consecutive years, spring cambial phenology activity was also weekly monitored on microcores, and critical phenology dates recorded. The stands matched CPH only partially, showing different phylogenetic history and their bridging between northern and southern groups of silver fir populations was confirmed. LV was distinct from PIG and BT. The within-population variance component was significantly high, and no narrow relatedness was observed between dominant and dominated/regeneration spatially closer trees, and genetic parameters were comparable in both layers at LV and PIG. In both stands, older age classes ensured natural regeneration. Cambium phenology was highly variable within populations, consistently to other Mediterranean conifers, and highly sensitive to local and year’s conditions and monitoring will improve population’s adaptive capacity detection. Shelterwood-system silvicultural treatments are suggested on small areas to drive the demographic and panmictic balance towards an uneven-aged more resilient structure, and iterated monitoring will help to adapt the forest management to the isotherm shift.\",\"PeriodicalId\":48954,\"journal\":{\"name\":\"Annals of Forest Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Forest Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.15287/afr.2021.2281\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Forest Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.15287/afr.2021.2281","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 6

摘要

了解树种对气候变化的反应对于保护生物多样性至关重要,尤其是在冷杉广泛分布的南欧热点地区。三个亚平宁银杉种群,Pigeleto(PIG)、La Verna(LV)和Bocca Trabaria(BT),确保了亚平宁山脉北部和南部两个系统发育不同的类群在间冰期的基因流动。对这些林分进行了分析(核和叶绿体SSR),目的是根据预期变化为其未来管理建立基线。对这三个森林进行了中心周边假说(CPH)测试,并与45个意大利种群进行了比较。同时,对LV和PIG内的优势(a)和优势或自然再生(r)树层以及年龄等级的永久区域进行了调查。在连续两年中,还每周在微卫星上监测春季形成层的酚学活动,并记录关键的酚学日期。林分仅部分匹配CPH,显示出不同的系统发育史,它们在银杉种群的北部和南部群体之间的联系得到了证实。LV与PIG和BT不同。群体内方差分量显著较高,在空间上较近的优势树和优势树/再生树之间没有观察到狭窄的相关性,LV和PIG两层的遗传参数具有可比性。在这两个林分中,年龄较大的阶层确保了自然再生。Cambium酚学在种群内高度可变,与其他地中海针叶树一致,对当地和年份的条件高度敏感,监测将提高种群的适应能力检测。建议对小面积地区进行防护林系统造林处理,以推动人口和泛生态平衡朝着不均衡、老化更具弹性的结构发展,迭代监测将有助于使森林管理适应等温线的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Establishing a baseline to monitor future climate-change-effects on peripheral populations of Abies alba (Mill.) in central Apennines
Understanding tree species responses to climate change is crucial for preserving biodiversity especially in Southern Europe hot spots where Abies alba is widely spread. Three Apennine silver fir populations, Pigelleto (PIG), La Verna (LV) and Bocca Trabaria (BT), ensured gene flows in interglacial periods between the two phylogenetically different groups of northern and southern Apennines. These stands were analysed (nuclear and chloroplast SSRs) with the aim to establish a baseline for their future management in view of the expected changes. The three forests were tested for the Centre-Periphery Hypothesis (CPH) compared to forty-five Italian populations. At the same time, permanent areas were surveyed within LV and PIG on dominant (a) and dominated or natural regeneration (r) tree layers, and on age classes. In two consecutive years, spring cambial phenology activity was also weekly monitored on microcores, and critical phenology dates recorded. The stands matched CPH only partially, showing different phylogenetic history and their bridging between northern and southern groups of silver fir populations was confirmed. LV was distinct from PIG and BT. The within-population variance component was significantly high, and no narrow relatedness was observed between dominant and dominated/regeneration spatially closer trees, and genetic parameters were comparable in both layers at LV and PIG. In both stands, older age classes ensured natural regeneration. Cambium phenology was highly variable within populations, consistently to other Mediterranean conifers, and highly sensitive to local and year’s conditions and monitoring will improve population’s adaptive capacity detection. Shelterwood-system silvicultural treatments are suggested on small areas to drive the demographic and panmictic balance towards an uneven-aged more resilient structure, and iterated monitoring will help to adapt the forest management to the isotherm shift.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
11.10%
发文量
11
审稿时长
12 weeks
期刊介绍: Annals of Forest Research is a semestrial open access journal, which publishes research articles, research notes and critical review papers, exclusively in English, on topics dealing with forestry and environmental sciences. The journal promotes high scientific level articles, by following international editorial conventions and by applying a peer-review selection process.
期刊最新文献
Factors affecting adoption of forestry social services: evidence from major forestry provinces in China Thinning promotes litter decomposition and nutrient release in poplar plantations via altering the microclimate and understory plant diversity A review of Botryosphaeriales in Venezuela with special reference to woody plants Detection of invasive plants using NAIP imagery and airborne LiDAR in coastal Alabama and Mississippi, USA Multi-temporal Pacific madrone leaf blight assessment with unoccupied aircraft systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1