H. Su, Lai Hu, Senqiang Zhu, Jiapeng Lu, Jinyang Hu, Rui Liu, Hongjun Zhu
{"title":"具有强而长寿命激发态吸收的过渡金属配合物:从分子设计到光功率限制行为","authors":"H. Su, Lai Hu, Senqiang Zhu, Jiapeng Lu, Jinyang Hu, Rui Liu, Hongjun Zhu","doi":"10.1515/revic-2022-0013","DOIUrl":null,"url":null,"abstract":"Abstract Transition metal complexes (TMCs) with strong and long-lived excited state absorption (ESA) usually exhibit high-performance optical power limiting (OPL) response. Several techniques, such as transmission vs. incident fluence curves and Z-scan have been widely used to assess the OPL performance of typical TMCs. The OPL performance of TMCs is highly molecular structure-dependent. Special emphasis is placed on the structure-OPL response relationships of Pt(II), Ir(III), Ru(II), and other metal complexes. This review concludes with perspectives on the current status of OPL field, as well as opportunities that lie just beyond its frontier.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Transition metal complexes with strong and long-lived excited state absorption: from molecular design to optical power limiting behavior\",\"authors\":\"H. Su, Lai Hu, Senqiang Zhu, Jiapeng Lu, Jinyang Hu, Rui Liu, Hongjun Zhu\",\"doi\":\"10.1515/revic-2022-0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Transition metal complexes (TMCs) with strong and long-lived excited state absorption (ESA) usually exhibit high-performance optical power limiting (OPL) response. Several techniques, such as transmission vs. incident fluence curves and Z-scan have been widely used to assess the OPL performance of typical TMCs. The OPL performance of TMCs is highly molecular structure-dependent. Special emphasis is placed on the structure-OPL response relationships of Pt(II), Ir(III), Ru(II), and other metal complexes. This review concludes with perspectives on the current status of OPL field, as well as opportunities that lie just beyond its frontier.\",\"PeriodicalId\":21162,\"journal\":{\"name\":\"Reviews in Inorganic Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2022-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Inorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/revic-2022-0013\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/revic-2022-0013","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Transition metal complexes with strong and long-lived excited state absorption: from molecular design to optical power limiting behavior
Abstract Transition metal complexes (TMCs) with strong and long-lived excited state absorption (ESA) usually exhibit high-performance optical power limiting (OPL) response. Several techniques, such as transmission vs. incident fluence curves and Z-scan have been widely used to assess the OPL performance of typical TMCs. The OPL performance of TMCs is highly molecular structure-dependent. Special emphasis is placed on the structure-OPL response relationships of Pt(II), Ir(III), Ru(II), and other metal complexes. This review concludes with perspectives on the current status of OPL field, as well as opportunities that lie just beyond its frontier.
期刊介绍:
Reviews in Inorganic Chemistry (REVIC) is a quarterly, peer-reviewed journal that focuses on developments in inorganic chemistry. Technical reviews offer detailed synthesis protocols, reviews of methodology and descriptions of apparatus. Topics are treated from a synthetic, theoretical, or analytical perspective. The editors and the publisher are committed to high quality standards and rapid handling of the review and publication process. The journal publishes all aspects of solid-state, molecular and surface chemistry. Topics may be treated from a synthetic, theoretical, or analytical perspective. The editors and the publisher are commited to high quality standards and rapid handling of the review and publication process.
Topics:
-Main group chemistry-
Transition metal chemistry-
Coordination chemistry-
Organometallic chemistry-
Catalysis-
Bioinorganic chemistry-
Supramolecular chemistry-
Ionic liquids