Karine Gouriet, Pascal Roussel, Philippe Carrez, Patrick Cordier
{"title":"顽火辉石的极限力学性能","authors":"Karine Gouriet, Pascal Roussel, Philippe Carrez, Patrick Cordier","doi":"10.1007/s00269-022-01206-5","DOIUrl":null,"url":null,"abstract":"<div><p>The ultimate mechanical properties of MgSiO<sub>3</sub> orthoenstatite (OEN), as characterized here by the ideal strengths, have been calculated under tensile and shear loadings using first-principles calculations. Both ideal tensile strength (ITS) and shear strength (ISS) are computed by applying homogeneous strain increments along high-symmetry directions ([100], [010], and [001]) and low index shear planes ((100), (010), and (001)) of the orthorhombic lattice. We show that the ultimate mechanical properties of OEN are highly anisotropic during tensile loading, with ITS ranging from 4.5 GPa along [001] to 8.7 GPa along [100], and quite isotropic during the shear loading with ISS ranging from 7.4 to 8.9 GPa. During tensile test along [100] and [001], a modified structure close to OEN has been found. This modified structure is more stable than OEN under stress (or strain). We have characterized its elastic and ultimate properties under tensile loading. With ITS ranging from 7.6 GPa along [010] to 25.6 GPa along [001], this modified structure appears to be very anisotropic with exceptional strength along [001].</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-022-01206-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Ultimate mechanical properties of enstatite\",\"authors\":\"Karine Gouriet, Pascal Roussel, Philippe Carrez, Patrick Cordier\",\"doi\":\"10.1007/s00269-022-01206-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The ultimate mechanical properties of MgSiO<sub>3</sub> orthoenstatite (OEN), as characterized here by the ideal strengths, have been calculated under tensile and shear loadings using first-principles calculations. Both ideal tensile strength (ITS) and shear strength (ISS) are computed by applying homogeneous strain increments along high-symmetry directions ([100], [010], and [001]) and low index shear planes ((100), (010), and (001)) of the orthorhombic lattice. We show that the ultimate mechanical properties of OEN are highly anisotropic during tensile loading, with ITS ranging from 4.5 GPa along [001] to 8.7 GPa along [100], and quite isotropic during the shear loading with ISS ranging from 7.4 to 8.9 GPa. During tensile test along [100] and [001], a modified structure close to OEN has been found. This modified structure is more stable than OEN under stress (or strain). We have characterized its elastic and ultimate properties under tensile loading. With ITS ranging from 7.6 GPa along [010] to 25.6 GPa along [001], this modified structure appears to be very anisotropic with exceptional strength along [001].</p></div>\",\"PeriodicalId\":20132,\"journal\":{\"name\":\"Physics and Chemistry of Minerals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00269-022-01206-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Chemistry of Minerals\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00269-022-01206-5\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Minerals","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00269-022-01206-5","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
The ultimate mechanical properties of MgSiO3 orthoenstatite (OEN), as characterized here by the ideal strengths, have been calculated under tensile and shear loadings using first-principles calculations. Both ideal tensile strength (ITS) and shear strength (ISS) are computed by applying homogeneous strain increments along high-symmetry directions ([100], [010], and [001]) and low index shear planes ((100), (010), and (001)) of the orthorhombic lattice. We show that the ultimate mechanical properties of OEN are highly anisotropic during tensile loading, with ITS ranging from 4.5 GPa along [001] to 8.7 GPa along [100], and quite isotropic during the shear loading with ISS ranging from 7.4 to 8.9 GPa. During tensile test along [100] and [001], a modified structure close to OEN has been found. This modified structure is more stable than OEN under stress (or strain). We have characterized its elastic and ultimate properties under tensile loading. With ITS ranging from 7.6 GPa along [010] to 25.6 GPa along [001], this modified structure appears to be very anisotropic with exceptional strength along [001].
期刊介绍:
Physics and Chemistry of Minerals is an international journal devoted to publishing articles and short communications of physical or chemical studies on minerals or solids related to minerals. The aim of the journal is to support competent interdisciplinary work in mineralogy and physics or chemistry. Particular emphasis is placed on applications of modern techniques or new theories and models to interpret atomic structures and physical or chemical properties of minerals. Some subjects of interest are:
-Relationships between atomic structure and crystalline state (structures of various states, crystal energies, crystal growth, thermodynamic studies, phase transformations, solid solution, exsolution phenomena, etc.)
-General solid state spectroscopy (ultraviolet, visible, infrared, Raman, ESCA, luminescence, X-ray, electron paramagnetic resonance, nuclear magnetic resonance, gamma ray resonance, etc.)
-Experimental and theoretical analysis of chemical bonding in minerals (application of crystal field, molecular orbital, band theories, etc.)
-Physical properties (magnetic, mechanical, electric, optical, thermodynamic, etc.)
-Relations between thermal expansion, compressibility, elastic constants, and fundamental properties of atomic structure, particularly as applied to geophysical problems
-Electron microscopy in support of physical and chemical studies
-Computational methods in the study of the structure and properties of minerals
-Mineral surfaces (experimental methods, structure and properties)