时间指数随机图模型和面向随机参与者模型的理论和经验比较——勘误表

IF 1.4 Q2 SOCIAL SCIENCES, INTERDISCIPLINARY Network Science Pub Date : 2022-03-01 DOI:10.1017/nws.2022.11
Philip Leifeld, S. Cranmer
{"title":"时间指数随机图模型和面向随机参与者模型的理论和经验比较——勘误表","authors":"Philip Leifeld, S. Cranmer","doi":"10.1017/nws.2022.11","DOIUrl":null,"url":null,"abstract":"Block, P., Hollway, J., Stadtfeld, C., Koskinen, J., & Snijders, T. (2022). Circular specifications and “predicting” with information from the future: Errors in the empirical SAOM–TERGM comparison of Leifeld & Cranmer. Network Science, 10(1). https://doi.org/10.1017/nws.2022.6 Leifeld, P., & Cranmer, S. (2019a). A theoretical and empirical comparison of the temporal exponential random graph model and the stochastic actor-oriented model. Network Science, 7(1), 20–51. https://doi.org/10.1017/nws.2018.26 Leifeld, P., & Cranmer, S. (2019b). Replication Data for: A Theoretical and Empirical Comparison of the Temporal Exponential Random Graph Model and the Stochastic Actor-Oriented Model, https://doi.org/10.7910/DVN/NEM2XU, Harvard Dataverse, V1. Leifeld, P., & Cranmer, S. (2022). The stochastic actor-oriented model is a theory as much as it is a method and must be subject to theory tests. Network Science, 10(1). https://doi.org/10.1017/nws.2022.7 Wasserman, S., & Brandes, U. (2022) Editors’ Note. Network Science, 10(1). https://doi.org/10.1017/nws.2022.8","PeriodicalId":51827,"journal":{"name":"Network Science","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A theoretical and empirical comparison of the temporal exponential random graph model and the stochastic actor-oriented model – Corrigendum\",\"authors\":\"Philip Leifeld, S. Cranmer\",\"doi\":\"10.1017/nws.2022.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Block, P., Hollway, J., Stadtfeld, C., Koskinen, J., & Snijders, T. (2022). Circular specifications and “predicting” with information from the future: Errors in the empirical SAOM–TERGM comparison of Leifeld & Cranmer. Network Science, 10(1). https://doi.org/10.1017/nws.2022.6 Leifeld, P., & Cranmer, S. (2019a). A theoretical and empirical comparison of the temporal exponential random graph model and the stochastic actor-oriented model. Network Science, 7(1), 20–51. https://doi.org/10.1017/nws.2018.26 Leifeld, P., & Cranmer, S. (2019b). Replication Data for: A Theoretical and Empirical Comparison of the Temporal Exponential Random Graph Model and the Stochastic Actor-Oriented Model, https://doi.org/10.7910/DVN/NEM2XU, Harvard Dataverse, V1. Leifeld, P., & Cranmer, S. (2022). The stochastic actor-oriented model is a theory as much as it is a method and must be subject to theory tests. Network Science, 10(1). https://doi.org/10.1017/nws.2022.7 Wasserman, S., & Brandes, U. (2022) Editors’ Note. Network Science, 10(1). https://doi.org/10.1017/nws.2022.8\",\"PeriodicalId\":51827,\"journal\":{\"name\":\"Network Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/nws.2022.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SOCIAL SCIENCES, INTERDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/nws.2022.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Block,P.、Hollway,J.、Stadtfeld,C.、Koskinen,J.和Snijders,T.(2022)。循环规范和未来信息的“预测”:Leifeld&Cranmer的经验SAOM–TERGM比较中的错误。网络科学,10(1)。https://doi.org/10.1017/nws.2022.6Leifeld,P.和Cranmer,S.(2019a)。时间指数随机图模型和面向随机参与者模型的理论和实证比较。网络科学,7(1),20-51。https://doi.org/10.1017/nws.2018.26Leifeld,P.和Cranmer,S.(2019b)。复制数据:时间指数随机图模型和面向随机参与者模型的理论和经验比较,https://doi.org/10.7910/DVN/NEM2XU,Harvard Dataverse,V1。Leifeld,P.和Cranmer,S.(2022)。随机行动者导向模型既是一种理论,也是一种方法,必须经过理论检验。网络科学,10(1)。https://doi.org/10.1017/nws.2022.7Wasserman,S.和Brandes,U.(2022)编者按。网络科学,10(1)。https://doi.org/10.1017/nws.2022.8
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A theoretical and empirical comparison of the temporal exponential random graph model and the stochastic actor-oriented model – Corrigendum
Block, P., Hollway, J., Stadtfeld, C., Koskinen, J., & Snijders, T. (2022). Circular specifications and “predicting” with information from the future: Errors in the empirical SAOM–TERGM comparison of Leifeld & Cranmer. Network Science, 10(1). https://doi.org/10.1017/nws.2022.6 Leifeld, P., & Cranmer, S. (2019a). A theoretical and empirical comparison of the temporal exponential random graph model and the stochastic actor-oriented model. Network Science, 7(1), 20–51. https://doi.org/10.1017/nws.2018.26 Leifeld, P., & Cranmer, S. (2019b). Replication Data for: A Theoretical and Empirical Comparison of the Temporal Exponential Random Graph Model and the Stochastic Actor-Oriented Model, https://doi.org/10.7910/DVN/NEM2XU, Harvard Dataverse, V1. Leifeld, P., & Cranmer, S. (2022). The stochastic actor-oriented model is a theory as much as it is a method and must be subject to theory tests. Network Science, 10(1). https://doi.org/10.1017/nws.2022.7 Wasserman, S., & Brandes, U. (2022) Editors’ Note. Network Science, 10(1). https://doi.org/10.1017/nws.2022.8
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Network Science
Network Science SOCIAL SCIENCES, INTERDISCIPLINARY-
CiteScore
3.50
自引率
5.90%
发文量
24
期刊介绍: Network Science is an important journal for an important discipline - one using the network paradigm, focusing on actors and relational linkages, to inform research, methodology, and applications from many fields across the natural, social, engineering and informational sciences. Given growing understanding of the interconnectedness and globalization of the world, network methods are an increasingly recognized way to research aspects of modern society along with the individuals, organizations, and other actors within it. The discipline is ready for a comprehensive journal, open to papers from all relevant areas. Network Science is a defining work, shaping this discipline. The journal welcomes contributions from researchers in all areas working on network theory, methods, and data.
期刊最新文献
Guiding prevention initiatives by applying network analysis to systems maps of adverse childhood experiences and adolescent suicide The latent cognitive structures of social networks Algorithmic aspects of temporal betweenness When can networks be inferred from observed groups? Generating preferential attachment graphs via a Pólya urn with expanding colors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1