{"title":"用Skyrme-Hartree-Fock方法研究一些放射治疗产核靶核的核结构","authors":"A. Alzubadi, Duaa Majid Hameed","doi":"10.4236/WJNST.2017.72006","DOIUrl":null,"url":null,"abstract":"The nuclear structure for some target nuclei namely: 32S, 58Ni, 89Y, 90Zr, 100Mo and 197Au used for production of the therapeutic radionuclides; 32P, 58Co, 89Sr, 90Y, 99Mo, 100Tc, 197Pt and 197Hg has been investigated using Skyrme-Hartree-Fock method based on Skyrme effective two-body interaction. For these purpose, we have calculated the various nuclear densities, the corresponding root mean square radii and nuclear binding energies. The density dependent initial neutron and proton exciton numbers have been also calculated which give the ability to investigate the neutron and proton induced reaction cross-sections for these target nuclei using hybrid model for pre-equilibrium nuclear reactions. The calculated results are compared with available experimental data.","PeriodicalId":61566,"journal":{"name":"核科学与技术国际期刊(英文)","volume":"07 1","pages":"67-83"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Studying the Nuclear Structure of Some Target Nuclei Used for Radiotherapy Nuclei Production by Using Skyrme-Hartree-Fock Method\",\"authors\":\"A. Alzubadi, Duaa Majid Hameed\",\"doi\":\"10.4236/WJNST.2017.72006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The nuclear structure for some target nuclei namely: 32S, 58Ni, 89Y, 90Zr, 100Mo and 197Au used for production of the therapeutic radionuclides; 32P, 58Co, 89Sr, 90Y, 99Mo, 100Tc, 197Pt and 197Hg has been investigated using Skyrme-Hartree-Fock method based on Skyrme effective two-body interaction. For these purpose, we have calculated the various nuclear densities, the corresponding root mean square radii and nuclear binding energies. The density dependent initial neutron and proton exciton numbers have been also calculated which give the ability to investigate the neutron and proton induced reaction cross-sections for these target nuclei using hybrid model for pre-equilibrium nuclear reactions. The calculated results are compared with available experimental data.\",\"PeriodicalId\":61566,\"journal\":{\"name\":\"核科学与技术国际期刊(英文)\",\"volume\":\"07 1\",\"pages\":\"67-83\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"核科学与技术国际期刊(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.4236/WJNST.2017.72006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"核科学与技术国际期刊(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4236/WJNST.2017.72006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Studying the Nuclear Structure of Some Target Nuclei Used for Radiotherapy Nuclei Production by Using Skyrme-Hartree-Fock Method
The nuclear structure for some target nuclei namely: 32S, 58Ni, 89Y, 90Zr, 100Mo and 197Au used for production of the therapeutic radionuclides; 32P, 58Co, 89Sr, 90Y, 99Mo, 100Tc, 197Pt and 197Hg has been investigated using Skyrme-Hartree-Fock method based on Skyrme effective two-body interaction. For these purpose, we have calculated the various nuclear densities, the corresponding root mean square radii and nuclear binding energies. The density dependent initial neutron and proton exciton numbers have been also calculated which give the ability to investigate the neutron and proton induced reaction cross-sections for these target nuclei using hybrid model for pre-equilibrium nuclear reactions. The calculated results are compared with available experimental data.