{"title":"使用叶片作为涡流发生器的亚音速射流控制","authors":"Balamani Gandhinathan, Thanigaiarasu Subramanian","doi":"10.1515/tjj-2022-0062","DOIUrl":null,"url":null,"abstract":"Abstract The passive control of jets using vanes as vortex generators is studied by numerical simulation in this paper. The vanes are positioned inside the nozzle near the exit, inclined to the flow with the longitudinal direction of the jet. Two configurations namely, straight vanes (k = 0 mm−1) and curved vanes (k = 0.05 mm−1) are considered. Curvature k is defined as the reciprocal of the radius of the vanes. The blockage due to the presence of the vanes is 0.5%. The total pressure variation along the jet centreline and along the radial distance is determined from nozzle exit at a Mach number of 0.4, 0.6 and 0.8. It is found that the vanes cause faster decay of the jet, both in the near field and far field compared to the base nozzle (plain circular nozzle) and the curved vanes perform better than the straight vanes in promoting the jet mixing. A maximum of 54% reduction in jet potential core length is achieved by the curved vanes and the jet becomes asymmetrical due to the presence of the vanes inside the nozzle, as observed in the radial pressure decay plots and Mach number contours.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Control of subsonic jets using vanes as vortex generators\",\"authors\":\"Balamani Gandhinathan, Thanigaiarasu Subramanian\",\"doi\":\"10.1515/tjj-2022-0062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The passive control of jets using vanes as vortex generators is studied by numerical simulation in this paper. The vanes are positioned inside the nozzle near the exit, inclined to the flow with the longitudinal direction of the jet. Two configurations namely, straight vanes (k = 0 mm−1) and curved vanes (k = 0.05 mm−1) are considered. Curvature k is defined as the reciprocal of the radius of the vanes. The blockage due to the presence of the vanes is 0.5%. The total pressure variation along the jet centreline and along the radial distance is determined from nozzle exit at a Mach number of 0.4, 0.6 and 0.8. It is found that the vanes cause faster decay of the jet, both in the near field and far field compared to the base nozzle (plain circular nozzle) and the curved vanes perform better than the straight vanes in promoting the jet mixing. A maximum of 54% reduction in jet potential core length is achieved by the curved vanes and the jet becomes asymmetrical due to the presence of the vanes inside the nozzle, as observed in the radial pressure decay plots and Mach number contours.\",\"PeriodicalId\":50284,\"journal\":{\"name\":\"International Journal of Turbo & Jet-Engines\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Turbo & Jet-Engines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/tjj-2022-0062\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Turbo & Jet-Engines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/tjj-2022-0062","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Control of subsonic jets using vanes as vortex generators
Abstract The passive control of jets using vanes as vortex generators is studied by numerical simulation in this paper. The vanes are positioned inside the nozzle near the exit, inclined to the flow with the longitudinal direction of the jet. Two configurations namely, straight vanes (k = 0 mm−1) and curved vanes (k = 0.05 mm−1) are considered. Curvature k is defined as the reciprocal of the radius of the vanes. The blockage due to the presence of the vanes is 0.5%. The total pressure variation along the jet centreline and along the radial distance is determined from nozzle exit at a Mach number of 0.4, 0.6 and 0.8. It is found that the vanes cause faster decay of the jet, both in the near field and far field compared to the base nozzle (plain circular nozzle) and the curved vanes perform better than the straight vanes in promoting the jet mixing. A maximum of 54% reduction in jet potential core length is achieved by the curved vanes and the jet becomes asymmetrical due to the presence of the vanes inside the nozzle, as observed in the radial pressure decay plots and Mach number contours.
期刊介绍:
The Main aim and scope of this Journal is to help improve each separate components R&D and superimpose separated results to get integrated systems by striving to reach the overall advanced design and benefits by integrating: (a) Physics, Aero, and Stealth Thermodynamics in simulations by flying unmanned or manned prototypes supported by integrated Computer Simulations based on: (b) Component R&D of: (i) Turbo and Jet-Engines, (ii) Airframe, (iii) Helmet-Aiming-Systems and Ammunition based on: (c) Anticipated New Programs Missions based on (d) IMPROVED RELIABILITY, DURABILITY, ECONOMICS, TACTICS, STRATEGIES and EDUCATION in both the civil and military domains of Turbo and Jet Engines.
The International Journal of Turbo & Jet Engines is devoted to cutting edge research in theory and design of propagation of jet aircraft. It serves as an international publication organ for new ideas, insights and results from industry and academic research on thermodynamics, combustion, behavior of related materials at high temperatures, turbine and engine design, thrust vectoring and flight control as well as energy and environmental issues.