{"title":"印度水泥工业的温度变化和减缓潜力","authors":"Priyanka Jajal, T. Mishra","doi":"10.1080/17583004.2022.2085175","DOIUrl":null,"url":null,"abstract":"Abstract Cement is one of the highest energy-consuming and emission generating industries around the world. To reduce greenhouse emissions, several mitigation measures have been proposed, and their effectiveness is estimated. However, estimates of the global temperature change potential of the cement industry have seldom been performed. Hence, in this study, we propose a new framework that estimates CO2 emissions and other seven pollutants to estimate temperature change potential from the cement industry. The underlying framework uses system dynamics, where the effectiveness of four mitigation measures, i.e., a shift in demand, newer methodologies to produce clinker, use of energy efficiency improvements, and implementation of renewable energy, are explored. The results indicate that renewable sources of energy show highest mitigation potential. The cement industry has contributed to an increase in 2 mK temperature since 1990, which is likely to grow up to 14.8 mK by 2050 if no mitigation measures are applied. Energy efficiency improvements by extensions of perform achieve and trade scheme can reduce 0.33 mK from the Indian cement industry. This paper provides a unique opportunity for estimating temperature influence of the cement industry, which can be further implemented for other countries.","PeriodicalId":48941,"journal":{"name":"Carbon Management","volume":"13 1","pages":"341 - 351"},"PeriodicalIF":2.8000,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature change and mitigation potential of Indian cement industry\",\"authors\":\"Priyanka Jajal, T. Mishra\",\"doi\":\"10.1080/17583004.2022.2085175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Cement is one of the highest energy-consuming and emission generating industries around the world. To reduce greenhouse emissions, several mitigation measures have been proposed, and their effectiveness is estimated. However, estimates of the global temperature change potential of the cement industry have seldom been performed. Hence, in this study, we propose a new framework that estimates CO2 emissions and other seven pollutants to estimate temperature change potential from the cement industry. The underlying framework uses system dynamics, where the effectiveness of four mitigation measures, i.e., a shift in demand, newer methodologies to produce clinker, use of energy efficiency improvements, and implementation of renewable energy, are explored. The results indicate that renewable sources of energy show highest mitigation potential. The cement industry has contributed to an increase in 2 mK temperature since 1990, which is likely to grow up to 14.8 mK by 2050 if no mitigation measures are applied. Energy efficiency improvements by extensions of perform achieve and trade scheme can reduce 0.33 mK from the Indian cement industry. This paper provides a unique opportunity for estimating temperature influence of the cement industry, which can be further implemented for other countries.\",\"PeriodicalId\":48941,\"journal\":{\"name\":\"Carbon Management\",\"volume\":\"13 1\",\"pages\":\"341 - 351\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2022-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/17583004.2022.2085175\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/17583004.2022.2085175","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Temperature change and mitigation potential of Indian cement industry
Abstract Cement is one of the highest energy-consuming and emission generating industries around the world. To reduce greenhouse emissions, several mitigation measures have been proposed, and their effectiveness is estimated. However, estimates of the global temperature change potential of the cement industry have seldom been performed. Hence, in this study, we propose a new framework that estimates CO2 emissions and other seven pollutants to estimate temperature change potential from the cement industry. The underlying framework uses system dynamics, where the effectiveness of four mitigation measures, i.e., a shift in demand, newer methodologies to produce clinker, use of energy efficiency improvements, and implementation of renewable energy, are explored. The results indicate that renewable sources of energy show highest mitigation potential. The cement industry has contributed to an increase in 2 mK temperature since 1990, which is likely to grow up to 14.8 mK by 2050 if no mitigation measures are applied. Energy efficiency improvements by extensions of perform achieve and trade scheme can reduce 0.33 mK from the Indian cement industry. This paper provides a unique opportunity for estimating temperature influence of the cement industry, which can be further implemented for other countries.
期刊介绍:
Carbon Management is a scholarly peer-reviewed forum for insights from the diverse array of disciplines that enhance our understanding of carbon dioxide and other GHG interactions – from biology, ecology, chemistry and engineering to law, policy, economics and sociology.
The core aim of Carbon Management is it to examine the options and mechanisms for mitigating the causes and impacts of climate change, which includes mechanisms for reducing emissions and enhancing the removal of GHGs from the atmosphere, as well as metrics used to measure performance of options and mechanisms resulting from international treaties, domestic policies, local regulations, environmental markets, technologies, industrial efforts and consumer choices.
One key aim of the journal is to catalyse intellectual debate in an inclusive and scientific manner on the practical work of policy implementation related to the long-term effort of managing our global GHG emissions and impacts. Decisions made in the near future will have profound impacts on the global climate and biosphere. Carbon Management delivers research findings in an accessible format to inform decisions in the fields of research, education, management and environmental policy.