{"title":"管道系统交流干扰的预测与缓解","authors":"A. Thakur, A. K. Arya, pushpanth Sharma","doi":"10.1515/corrrev-2021-0061","DOIUrl":null,"url":null,"abstract":"Abstract The purpose of this paper is to predict and mitigate AC interference on buried pipeline systems due to transmission lines. Modeling and field verification of AC interference is done. The article also presents the issue of optimizing the mitigation measures. The paper uses the field data on soil resistivity, transmission line, and pipeline details to develop a model using current distribution electromagnetic interference grounding and soil structure analysis (CDEGS) software to predict the AC interference on the pipeline system. The model is validated with field measurements, and post-mitigation measures are considered. Mitigation measures are optimized to develop an economical mitigation plan. The case demonstrates the use of modeling techniques to predict and mitigate AC interference on pipelines. The field validation of modeling results helps improve the modeling results and plan optimized mitigation measures. The study requires providing comprehensive field data relevant to the pipeline system under consideration. The accuracy of the field data may have a bearing on the outcome of the study. The study enables designing and optimizing mitigation measures using modeling. Comparisons with field measurements help achieve desired pipeline system integrity against AC corrosion.","PeriodicalId":10721,"journal":{"name":"Corrosion Reviews","volume":"40 1","pages":"149 - 157"},"PeriodicalIF":2.7000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Prediction and mitigation of AC interference on the pipeline system\",\"authors\":\"A. Thakur, A. K. Arya, pushpanth Sharma\",\"doi\":\"10.1515/corrrev-2021-0061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The purpose of this paper is to predict and mitigate AC interference on buried pipeline systems due to transmission lines. Modeling and field verification of AC interference is done. The article also presents the issue of optimizing the mitigation measures. The paper uses the field data on soil resistivity, transmission line, and pipeline details to develop a model using current distribution electromagnetic interference grounding and soil structure analysis (CDEGS) software to predict the AC interference on the pipeline system. The model is validated with field measurements, and post-mitigation measures are considered. Mitigation measures are optimized to develop an economical mitigation plan. The case demonstrates the use of modeling techniques to predict and mitigate AC interference on pipelines. The field validation of modeling results helps improve the modeling results and plan optimized mitigation measures. The study requires providing comprehensive field data relevant to the pipeline system under consideration. The accuracy of the field data may have a bearing on the outcome of the study. The study enables designing and optimizing mitigation measures using modeling. Comparisons with field measurements help achieve desired pipeline system integrity against AC corrosion.\",\"PeriodicalId\":10721,\"journal\":{\"name\":\"Corrosion Reviews\",\"volume\":\"40 1\",\"pages\":\"149 - 157\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion Reviews\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/corrrev-2021-0061\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/corrrev-2021-0061","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Prediction and mitigation of AC interference on the pipeline system
Abstract The purpose of this paper is to predict and mitigate AC interference on buried pipeline systems due to transmission lines. Modeling and field verification of AC interference is done. The article also presents the issue of optimizing the mitigation measures. The paper uses the field data on soil resistivity, transmission line, and pipeline details to develop a model using current distribution electromagnetic interference grounding and soil structure analysis (CDEGS) software to predict the AC interference on the pipeline system. The model is validated with field measurements, and post-mitigation measures are considered. Mitigation measures are optimized to develop an economical mitigation plan. The case demonstrates the use of modeling techniques to predict and mitigate AC interference on pipelines. The field validation of modeling results helps improve the modeling results and plan optimized mitigation measures. The study requires providing comprehensive field data relevant to the pipeline system under consideration. The accuracy of the field data may have a bearing on the outcome of the study. The study enables designing and optimizing mitigation measures using modeling. Comparisons with field measurements help achieve desired pipeline system integrity against AC corrosion.
期刊介绍:
Corrosion Reviews is an international bimonthly journal devoted to critical reviews and, to a lesser extent, outstanding original articles that are key to advancing the understanding and application of corrosion science and engineering in the service of society. Papers may be of a theoretical, experimental or practical nature, provided that they make a significant contribution to knowledge in the field.