现代数据建模:两种文化的交叉受精

Jianqing Fan, Cong Ma, Kaizheng Wang, Ziwei Zhu
{"title":"现代数据建模:两种文化的交叉受精","authors":"Jianqing Fan, Cong Ma, Kaizheng Wang, Ziwei Zhu","doi":"10.1353/obs.2021.0023","DOIUrl":null,"url":null,"abstract":"Abstract:The past two decades have witnessed deep cross-fertilization between the two cultures—statistics (data/generative modeling) and machine learning (algorithmic modeling), which is in stark contrast to the scene pictured in Breiman's inspiring work. In light of this major confluence, we find it helpful to single out a few salient examples showcasing the impacts of one to the other, and the research progress out of them. We point out in the end that the current big data era especially requires joint efforts from both cultures in order to address some common challenges including decentralized data analysis, privacy, fairness, etc.","PeriodicalId":74335,"journal":{"name":"Observational studies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Modern Data Modeling: Cross-Fertilization of the Two Cultures\",\"authors\":\"Jianqing Fan, Cong Ma, Kaizheng Wang, Ziwei Zhu\",\"doi\":\"10.1353/obs.2021.0023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract:The past two decades have witnessed deep cross-fertilization between the two cultures—statistics (data/generative modeling) and machine learning (algorithmic modeling), which is in stark contrast to the scene pictured in Breiman's inspiring work. In light of this major confluence, we find it helpful to single out a few salient examples showcasing the impacts of one to the other, and the research progress out of them. We point out in the end that the current big data era especially requires joint efforts from both cultures in order to address some common challenges including decentralized data analysis, privacy, fairness, etc.\",\"PeriodicalId\":74335,\"journal\":{\"name\":\"Observational studies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Observational studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1353/obs.2021.0023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Observational studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1353/obs.2021.0023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

摘要:在过去的二十年里,统计学(数据/生成建模)和机器学习(算法建模)这两种文化之间发生了深刻的交叉融合,这与布莱曼鼓舞人心的作品中的场景形成了鲜明对比。鉴于这一主要汇合点,我们发现挑出几个突出的例子来展示一个对另一个的影响以及其中的研究进展是很有帮助的。我们最后指出,当前的大数据时代尤其需要两种文化的共同努力,以应对一些共同的挑战,包括去中心化的数据分析、隐私、公平等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modern Data Modeling: Cross-Fertilization of the Two Cultures
Abstract:The past two decades have witnessed deep cross-fertilization between the two cultures—statistics (data/generative modeling) and machine learning (algorithmic modeling), which is in stark contrast to the scene pictured in Breiman's inspiring work. In light of this major confluence, we find it helpful to single out a few salient examples showcasing the impacts of one to the other, and the research progress out of them. We point out in the end that the current big data era especially requires joint efforts from both cultures in order to address some common challenges including decentralized data analysis, privacy, fairness, etc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
期刊最新文献
Does matching introduce confounding or selection bias into the matched case-control design? Size-biased sensitivity analysis for matched pairs design to assess the impact of healthcare-associated infections A Software Tutorial for Matching in Clustered Observational Studies Using a difference-in-difference control trial to test an intervention aimed at increasing the take-up of a welfare payment in New Zealand Estimating Treatment Effect with Propensity Score Weighted Regression and Double Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1