{"title":"移动边缘云中的位置隐私:一种基于Chaff的方法","authors":"T. He, E. Ciftcioglu, Shiqiang Wang, K. Chan","doi":"10.1109/JSAC.2017.2760179","DOIUrl":null,"url":null,"abstract":"In this paper, we consider user location privacy in mobile edge clouds (MECs). MECs are small clouds deployed at the network edge to offer cloud services close to mobile users, and many solutions have been proposed to maximize service locality by migrating services to follow their users. Co-location of a user and his service, however, implies that a cyber eavesdropper observing service migrations between MECs can localize the user up to one MEC coverage area, which can be fairly small (e.g., a femtocell). We consider using chaff services to defend against such an eavesdropper, with a focus on strategies to control the chaffs. Assuming the eavesdropper performs maximum likelihood detection, we consider both heuristic strategies that mimic the user’s mobility and optimized strategies designed to minimize the detection or tracking accuracy. We show that a single chaff controlled by the optimal strategy or its online variation can drive the eavesdropper’s tracking accuracy to zero when the user’s mobility is sufficiently random. We further propose extended strategies that utilize randomization to defend against an advanced eavesdropper aware of the strategy. The efficacy of our solutions is verified through both synthetic and trace-driven simulations.","PeriodicalId":13243,"journal":{"name":"IEEE Journal on Selected Areas in Communications","volume":"35 1","pages":"2625-2636"},"PeriodicalIF":13.8000,"publicationDate":"2017-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/JSAC.2017.2760179","citationCount":"47","resultStr":"{\"title\":\"Location Privacy in Mobile Edge Clouds: A Chaff-Based Approach\",\"authors\":\"T. He, E. Ciftcioglu, Shiqiang Wang, K. Chan\",\"doi\":\"10.1109/JSAC.2017.2760179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider user location privacy in mobile edge clouds (MECs). MECs are small clouds deployed at the network edge to offer cloud services close to mobile users, and many solutions have been proposed to maximize service locality by migrating services to follow their users. Co-location of a user and his service, however, implies that a cyber eavesdropper observing service migrations between MECs can localize the user up to one MEC coverage area, which can be fairly small (e.g., a femtocell). We consider using chaff services to defend against such an eavesdropper, with a focus on strategies to control the chaffs. Assuming the eavesdropper performs maximum likelihood detection, we consider both heuristic strategies that mimic the user’s mobility and optimized strategies designed to minimize the detection or tracking accuracy. We show that a single chaff controlled by the optimal strategy or its online variation can drive the eavesdropper’s tracking accuracy to zero when the user’s mobility is sufficiently random. We further propose extended strategies that utilize randomization to defend against an advanced eavesdropper aware of the strategy. The efficacy of our solutions is verified through both synthetic and trace-driven simulations.\",\"PeriodicalId\":13243,\"journal\":{\"name\":\"IEEE Journal on Selected Areas in Communications\",\"volume\":\"35 1\",\"pages\":\"2625-2636\"},\"PeriodicalIF\":13.8000,\"publicationDate\":\"2017-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/JSAC.2017.2760179\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Selected Areas in Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/JSAC.2017.2760179\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Selected Areas in Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/JSAC.2017.2760179","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Location Privacy in Mobile Edge Clouds: A Chaff-Based Approach
In this paper, we consider user location privacy in mobile edge clouds (MECs). MECs are small clouds deployed at the network edge to offer cloud services close to mobile users, and many solutions have been proposed to maximize service locality by migrating services to follow their users. Co-location of a user and his service, however, implies that a cyber eavesdropper observing service migrations between MECs can localize the user up to one MEC coverage area, which can be fairly small (e.g., a femtocell). We consider using chaff services to defend against such an eavesdropper, with a focus on strategies to control the chaffs. Assuming the eavesdropper performs maximum likelihood detection, we consider both heuristic strategies that mimic the user’s mobility and optimized strategies designed to minimize the detection or tracking accuracy. We show that a single chaff controlled by the optimal strategy or its online variation can drive the eavesdropper’s tracking accuracy to zero when the user’s mobility is sufficiently random. We further propose extended strategies that utilize randomization to defend against an advanced eavesdropper aware of the strategy. The efficacy of our solutions is verified through both synthetic and trace-driven simulations.
期刊介绍:
The IEEE Journal on Selected Areas in Communications (JSAC) is a prestigious journal that covers various topics related to Computer Networks and Communications (Q1) as well as Electrical and Electronic Engineering (Q1). Each issue of JSAC is dedicated to a specific technical topic, providing readers with an up-to-date collection of papers in that area. The journal is highly regarded within the research community and serves as a valuable reference.
The topics covered by JSAC issues span the entire field of communications and networking, with recent issue themes including Network Coding for Wireless Communication Networks, Wireless and Pervasive Communications for Healthcare, Network Infrastructure Configuration, Broadband Access Networks: Architectures and Protocols, Body Area Networking: Technology and Applications, Underwater Wireless Communication Networks, Game Theory in Communication Systems, and Exploiting Limited Feedback in Tomorrow’s Communication Networks.