低资源语言统计与神经翻译系统的性能比较

IF 0.5 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal on Smart Sensing and Intelligent Systems Pub Date : 2023-01-01 DOI:10.2478/ijssis-2023-0007
Goutam Datta, Nisheeth Joshi, Kusum Gupta
{"title":"低资源语言统计与神经翻译系统的性能比较","authors":"Goutam Datta, Nisheeth Joshi, Kusum Gupta","doi":"10.2478/ijssis-2023-0007","DOIUrl":null,"url":null,"abstract":"Abstract One of the important applications for which natural language processing (NLP) is used is the machine translation (MT) system, which automatically converts one natural language to another. It has witnessed various paradigm shifts since its inception. Statistical machine translation (SMT) has dominated MT research for decades. In the recent past, researchers have focused on developing MT systems based on artificial neural networks (ANN). In this paper, first, some important deep learning models that are mostly exploited in Neural Machine Translation (NMT) design are discussed. A systematic comparison was done between the performances of SMT and NMT concerning the English-to-Bangla and English-to-Hindi translation tasks. Most of the Indian scripts are morphologically rich, and the availability of a sufficient corpus is rare. We have presented and analyzed our work and a survey was conducted on other low-resource languages, and finally some useful conclusions have been drawn.","PeriodicalId":45623,"journal":{"name":"International Journal on Smart Sensing and Intelligent Systems","volume":"16 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Comparison of Statistical vs. Neural-Based Translation System on Low-Resource Languages\",\"authors\":\"Goutam Datta, Nisheeth Joshi, Kusum Gupta\",\"doi\":\"10.2478/ijssis-2023-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract One of the important applications for which natural language processing (NLP) is used is the machine translation (MT) system, which automatically converts one natural language to another. It has witnessed various paradigm shifts since its inception. Statistical machine translation (SMT) has dominated MT research for decades. In the recent past, researchers have focused on developing MT systems based on artificial neural networks (ANN). In this paper, first, some important deep learning models that are mostly exploited in Neural Machine Translation (NMT) design are discussed. A systematic comparison was done between the performances of SMT and NMT concerning the English-to-Bangla and English-to-Hindi translation tasks. Most of the Indian scripts are morphologically rich, and the availability of a sufficient corpus is rare. We have presented and analyzed our work and a survey was conducted on other low-resource languages, and finally some useful conclusions have been drawn.\",\"PeriodicalId\":45623,\"journal\":{\"name\":\"International Journal on Smart Sensing and Intelligent Systems\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Smart Sensing and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ijssis-2023-0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Smart Sensing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ijssis-2023-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

自然语言处理(NLP)的一个重要应用是机器翻译(MT)系统,它可以自动地将一种自然语言转换为另一种自然语言。自成立以来,它见证了各种范式的转变。统计机器翻译(SMT)几十年来一直是机器翻译研究的主流。近年来,研究人员致力于开发基于人工神经网络(ANN)的机器翻译系统。本文首先讨论了神经机器翻译(NMT)设计中常用的一些重要的深度学习模型。系统比较了SMT和NMT在英语-孟加拉语和英语-印地语翻译任务中的表现。大多数的印度文字是丰富的形态,和可用的一个足够的语料库是罕见的。我们介绍和分析了我们的工作,并对其他低资源语言进行了调查,最后得出了一些有用的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Comparison of Statistical vs. Neural-Based Translation System on Low-Resource Languages
Abstract One of the important applications for which natural language processing (NLP) is used is the machine translation (MT) system, which automatically converts one natural language to another. It has witnessed various paradigm shifts since its inception. Statistical machine translation (SMT) has dominated MT research for decades. In the recent past, researchers have focused on developing MT systems based on artificial neural networks (ANN). In this paper, first, some important deep learning models that are mostly exploited in Neural Machine Translation (NMT) design are discussed. A systematic comparison was done between the performances of SMT and NMT concerning the English-to-Bangla and English-to-Hindi translation tasks. Most of the Indian scripts are morphologically rich, and the availability of a sufficient corpus is rare. We have presented and analyzed our work and a survey was conducted on other low-resource languages, and finally some useful conclusions have been drawn.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
8.30%
发文量
15
审稿时长
8 weeks
期刊介绍: nternational Journal on Smart Sensing and Intelligent Systems (S2IS) is a rapid and high-quality international forum wherein academics, researchers and practitioners may publish their high-quality, original, and state-of-the-art papers describing theoretical aspects, system architectures, analysis and design techniques, and implementation experiences in intelligent sensing technologies. The journal publishes articles reporting substantive results on a wide range of smart sensing approaches applied to variety of domain problems, including but not limited to: Ambient Intelligence and Smart Environment Analysis, Evaluation, and Test of Smart Sensors Intelligent Management of Sensors Fundamentals of Smart Sensing Principles and Mechanisms Materials and its Applications for Smart Sensors Smart Sensing Applications, Hardware, Software, Systems, and Technologies Smart Sensors in Multidisciplinary Domains and Problems Smart Sensors in Science and Engineering Smart Sensors in Social Science and Humanity
期刊最新文献
Performance Comparison of Statistical vs. Neural-Based Translation System on Low-Resource Languages Backpack detection model using multi-scale superpixel and body-part segmentation Study of structural and morphological properties of RF-sputtered SnO2 thin films and their effect on gas-sensing phenomenon Biometric authentication sensor with an encryption module for prevention of h/w hacking in digital custody services Multiple Sensor based Human Detection Robots: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1