Asdar, R. Saputra, Ika Purwanti Ningrum
{"title":"Pengenalan Pola Huruf Hijaiyah dengan Metode Local Binary Pattern Menggunakan Algoritma Fuzzy K-Nearest Neighbor","authors":"Asdar, R. Saputra, Ika Purwanti Ningrum","doi":"10.14421/jiska.2022.7.1.68-74","DOIUrl":null,"url":null,"abstract":"A letter is a form, stroke, or symbol writing system. Any information obtained from a sentence depends on the letters are written clearly. Finding written hijaiyah letters can be recognized by humans, but will be difficult if a computer tries to recognize them. The reason system is difficult is because of the large variety of different letters. This study aims to make it easier for someone to learn to recognize hijaiyah letters by using the Local Binary Pattern method for the feature extraction process. The results of feature extraction will take the maximum value of the histogram of each letter. And results feature extraction will be carried out classification process using the Fuzzy K-Nearest Neighbor algorithm until finally hijaiyah letters can be recognized. Based on experimental results that have been carried out, the highest level of accuracy is obtained when the amount of training data is 154 data and the number of data testing is 29 data, resulting in an accuracy rate of 96.55%.","PeriodicalId":34216,"journal":{"name":"JISKA Jurnal Informatika Sunan Kalijaga","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JISKA Jurnal Informatika Sunan Kalijaga","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14421/jiska.2022.7.1.68-74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

字母是一种形式、笔画或符号书写系统。从句子中获得的任何信息都取决于字母写得清楚。人类可以识别书写的hijaiyah字母,但如果计算机试图识别它们,则会很困难。系统之所以困难,是因为不同的字母种类繁多。本研究旨在通过使用局部二进制模式方法进行特征提取过程,使人们更容易学会识别hijaiyah字母。特征提取的结果将取每个字母的直方图的最大值。结果特征提取将使用模糊K-最近邻算法进行分类处理,直到最终识别出hijaiyah字母。基于已经进行的实验结果,当训练数据量为154个数据并且数据测试的数量为29个数据时,获得了最高水平的准确度,导致96.55%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pengenalan Pola Huruf Hijaiyah dengan Metode Local Binary Pattern Menggunakan Algoritma Fuzzy K-Nearest Neighbor
A letter is a form, stroke, or symbol writing system. Any information obtained from a sentence depends on the letters are written clearly. Finding written hijaiyah letters can be recognized by humans, but will be difficult if a computer tries to recognize them. The reason system is difficult is because of the large variety of different letters. This study aims to make it easier for someone to learn to recognize hijaiyah letters by using the Local Binary Pattern method for the feature extraction process. The results of feature extraction will take the maximum value of the histogram of each letter. And results feature extraction will be carried out classification process using the Fuzzy K-Nearest Neighbor algorithm until finally hijaiyah letters can be recognized. Based on experimental results that have been carried out, the highest level of accuracy is obtained when the amount of training data is 154 data and the number of data testing is 29 data, resulting in an accuracy rate of 96.55%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
21
审稿时长
12 weeks
期刊最新文献
Pemodelan Proses Bisnis Kuliah Online MOOCs menggunakan BPMN (Studi Kasus alison.com) Analisis Bibliometrik Publikasi Isu Kebocoran Data Menggunakan VOSviewer Klasifikasi Sentimen Masyarakat Terhadap Proses Pemindahan Ibu Kota Negara (IKN) Indonesia pada Media Sosial Twitter Menggunakan Metode Naïve Bayes Klasifikasi Tingkat Kerusakan Sektor Pasca Bencana Alam Menggunakan Metode MULTIMOORA Berbasis Web Pembuatan Ergonomic Mechanical Keyboard untuk Mengurangi Cidera Tangan Menggunakan Teknologi Arduino
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1