M. Mariani, Peter K. Asante, William Kubin, Osei K. Tweneboah, Maria P. Beccar-Varela
{"title":"确定Ornstein-Uhlenbeck模型的背景驱动过程","authors":"M. Mariani, Peter K. Asante, William Kubin, Osei K. Tweneboah, Maria P. Beccar-Varela","doi":"10.58997/ejde.sp.02.m1","DOIUrl":null,"url":null,"abstract":"In this work, we determine appropriate background driving processes for the 3-component superposed Ornstein-Uhlenbeck model by analyzing the fractal characteristics of the data sets using the rescaled range analysis (R/S), the detrended fluctuation analysis (DFA), and the diffusion entropy analysis (DEA). \nSee also https://ejde.math.txstate.edu/special/02/m1/abstr.html","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determining the background driving process of the Ornstein-Uhlenbeck model\",\"authors\":\"M. Mariani, Peter K. Asante, William Kubin, Osei K. Tweneboah, Maria P. Beccar-Varela\",\"doi\":\"10.58997/ejde.sp.02.m1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we determine appropriate background driving processes for the 3-component superposed Ornstein-Uhlenbeck model by analyzing the fractal characteristics of the data sets using the rescaled range analysis (R/S), the detrended fluctuation analysis (DFA), and the diffusion entropy analysis (DEA). \\nSee also https://ejde.math.txstate.edu/special/02/m1/abstr.html\",\"PeriodicalId\":49213,\"journal\":{\"name\":\"Electronic Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.sp.02.m1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.sp.02.m1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Determining the background driving process of the Ornstein-Uhlenbeck model
In this work, we determine appropriate background driving processes for the 3-component superposed Ornstein-Uhlenbeck model by analyzing the fractal characteristics of the data sets using the rescaled range analysis (R/S), the detrended fluctuation analysis (DFA), and the diffusion entropy analysis (DEA).
See also https://ejde.math.txstate.edu/special/02/m1/abstr.html
期刊介绍:
All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.