{"title":"利用糖-凝集素相互作用的高灵敏度葡萄糖电化学传感器","authors":"Kyoko Sugiyama, Fumiya Sato, Sachiko Komatsu, Toshio Kamijo, Kentaro Yoshida, Yusuke Kawabe, Hiromi Nishikawa, Tsutomu Fujimura, Yasufumi Takahashi, Katsuhiko Sato","doi":"10.1002/elsa.202300015","DOIUrl":null,"url":null,"abstract":"<p>In this study, glucose oxidase (GOx) was immobilized on the electrode surface by layer-by-layer and gel membrane technique and characterized the GOx immobilized film morphology, H<sub>2</sub>O<sub>2</sub> permeability, and glucose response. Concanavalin A (Con A)-GOx multilayer electrodes showed higher glucose-related current response than GOx-bovine serum albumin gel membrane-coated electrode, a common modification method. The thin thickness of the Con A/GOx multilayer film efficiently catalyzed the enzymatic reaction, and H<sub>2</sub>O<sub>2</sub> was produced near the electrode surface, resulting in an immediate electrode response.</p>","PeriodicalId":93746,"journal":{"name":"Electrochemical science advances","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsa.202300015","citationCount":"0","resultStr":"{\"title\":\"Highly sensitive glucose electrochemical sensor using sugar-lectin interactions\",\"authors\":\"Kyoko Sugiyama, Fumiya Sato, Sachiko Komatsu, Toshio Kamijo, Kentaro Yoshida, Yusuke Kawabe, Hiromi Nishikawa, Tsutomu Fujimura, Yasufumi Takahashi, Katsuhiko Sato\",\"doi\":\"10.1002/elsa.202300015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, glucose oxidase (GOx) was immobilized on the electrode surface by layer-by-layer and gel membrane technique and characterized the GOx immobilized film morphology, H<sub>2</sub>O<sub>2</sub> permeability, and glucose response. Concanavalin A (Con A)-GOx multilayer electrodes showed higher glucose-related current response than GOx-bovine serum albumin gel membrane-coated electrode, a common modification method. The thin thickness of the Con A/GOx multilayer film efficiently catalyzed the enzymatic reaction, and H<sub>2</sub>O<sub>2</sub> was produced near the electrode surface, resulting in an immediate electrode response.</p>\",\"PeriodicalId\":93746,\"journal\":{\"name\":\"Electrochemical science advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsa.202300015\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochemical science advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/elsa.202300015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemical science advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elsa.202300015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Highly sensitive glucose electrochemical sensor using sugar-lectin interactions
In this study, glucose oxidase (GOx) was immobilized on the electrode surface by layer-by-layer and gel membrane technique and characterized the GOx immobilized film morphology, H2O2 permeability, and glucose response. Concanavalin A (Con A)-GOx multilayer electrodes showed higher glucose-related current response than GOx-bovine serum albumin gel membrane-coated electrode, a common modification method. The thin thickness of the Con A/GOx multilayer film efficiently catalyzed the enzymatic reaction, and H2O2 was produced near the electrode surface, resulting in an immediate electrode response.