Gregory L. Rorrer , Jürgen Krail , Gerhard Piringer , Michael Roither
{"title":"将更广泛的影响和国际视角纳入可持续能源工程课程","authors":"Gregory L. Rorrer , Jürgen Krail , Gerhard Piringer , Michael Roither","doi":"10.1016/j.ece.2023.07.005","DOIUrl":null,"url":null,"abstract":"<div><p>The last 20 years has seen rapid expansion of sustainable energy deployment in the European Union (EU) and the United States (U.S.) that is driving the demand for trained professionals. An engineering degree with coursework in sustainable energy systems is a desirable initial qualification. However, engineering students should also appreciate the societal and environmental impacts<span> of the sustainable energy transition. Furthermore, since the sustainable energy transition is a global endeavor, an international perspective is needed. The sustainable energy engineering course described in this paper taught students the scientific and engineering principles underlying the major types of emerging sustainable energy technologies from a chemical engineering perspective. The technical content served as context for comparing renewable energy deployment in the EU country of Austria with the U.S. The broader impacts (societal and environmental) of renewable energy deployment were then illustrated through student presentations. Survey results showed that students gained understanding of the engineering fundamentals underlying these renewable energy systems and challenges of their deployment in Austria and the U.S. Therefore, a unique outcome of this course was that students gained an international perspective on the expansion of sustainable energy systems needed to secure a low-carbon energy future.</span></p></div>","PeriodicalId":48509,"journal":{"name":"Education for Chemical Engineers","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Integration of broader impacts and international perspectives into a sustainable energy engineering course\",\"authors\":\"Gregory L. Rorrer , Jürgen Krail , Gerhard Piringer , Michael Roither\",\"doi\":\"10.1016/j.ece.2023.07.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The last 20 years has seen rapid expansion of sustainable energy deployment in the European Union (EU) and the United States (U.S.) that is driving the demand for trained professionals. An engineering degree with coursework in sustainable energy systems is a desirable initial qualification. However, engineering students should also appreciate the societal and environmental impacts<span> of the sustainable energy transition. Furthermore, since the sustainable energy transition is a global endeavor, an international perspective is needed. The sustainable energy engineering course described in this paper taught students the scientific and engineering principles underlying the major types of emerging sustainable energy technologies from a chemical engineering perspective. The technical content served as context for comparing renewable energy deployment in the EU country of Austria with the U.S. The broader impacts (societal and environmental) of renewable energy deployment were then illustrated through student presentations. Survey results showed that students gained understanding of the engineering fundamentals underlying these renewable energy systems and challenges of their deployment in Austria and the U.S. Therefore, a unique outcome of this course was that students gained an international perspective on the expansion of sustainable energy systems needed to secure a low-carbon energy future.</span></p></div>\",\"PeriodicalId\":48509,\"journal\":{\"name\":\"Education for Chemical Engineers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Education for Chemical Engineers\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1749772823000362\",\"RegionNum\":2,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Education for Chemical Engineers","FirstCategoryId":"95","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1749772823000362","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
Integration of broader impacts and international perspectives into a sustainable energy engineering course
The last 20 years has seen rapid expansion of sustainable energy deployment in the European Union (EU) and the United States (U.S.) that is driving the demand for trained professionals. An engineering degree with coursework in sustainable energy systems is a desirable initial qualification. However, engineering students should also appreciate the societal and environmental impacts of the sustainable energy transition. Furthermore, since the sustainable energy transition is a global endeavor, an international perspective is needed. The sustainable energy engineering course described in this paper taught students the scientific and engineering principles underlying the major types of emerging sustainable energy technologies from a chemical engineering perspective. The technical content served as context for comparing renewable energy deployment in the EU country of Austria with the U.S. The broader impacts (societal and environmental) of renewable energy deployment were then illustrated through student presentations. Survey results showed that students gained understanding of the engineering fundamentals underlying these renewable energy systems and challenges of their deployment in Austria and the U.S. Therefore, a unique outcome of this course was that students gained an international perspective on the expansion of sustainable energy systems needed to secure a low-carbon energy future.
期刊介绍:
Education for Chemical Engineers was launched in 2006 with a remit to publisheducation research papers, resource reviews and teaching and learning notes. ECE is targeted at chemical engineering academics and educators, discussing the ongoingchanges and development in chemical engineering education. This international title publishes papers from around the world, creating a global network of chemical engineering academics. Papers demonstrating how educational research results can be applied to chemical engineering education are particularly welcome, as are the accounts of research work that brings new perspectives to established principles, highlighting unsolved problems or indicating direction for future research relevant to chemical engineering education. Core topic areas: -Assessment- Accreditation- Curriculum development and transformation- Design- Diversity- Distance education-- E-learning Entrepreneurship programs- Industry-academic linkages- Benchmarking- Lifelong learning- Multidisciplinary programs- Outreach from kindergarten to high school programs- Student recruitment and retention and transition programs- New technology- Problem-based learning- Social responsibility and professionalism- Teamwork- Web-based learning