{"title":"通过综合土壤-作物系统管理实现印度东部水稻种植区多样化,以减少温室气体排放和提高生产力","authors":"Akshay K. Singh, A. K. Ghorai, G. Kar","doi":"10.1080/17583004.2021.2023049","DOIUrl":null,"url":null,"abstract":"Abstract Mono-cropping, burning of crop residues, imbalanced fertilization and limited use of farm manure are resulting in loss of soil organic carbon (SOC). In this study, integrated soil-crop management (ILMsoil), improved management (IMsoil) and conventional management (CMsoil) was studied to enhance the soil carbon sequestration for mitigation of greenhouse gas (GHG) emissions. The life cycle assessment (LCA) approach was used to estimate carbon footprint from successive crops of rice, mustard and jute with or without intercrops or mixed crops. The adoption of ILMsoil helped in reducing the carbon footprint by 78%. The overall economic yield increased by 25% over IMsoil as well. Net CO2-eq emission was 68% less under ILMsoil as compared to other systems. The reduction in net LCA-GHG emission was mainly due to high SOC sequestration by jute crop and leguminous intercrops and mixed crops. Improved crop diversification and agronomic productivity as used in ILMsoil system may decrease the inputs of non-renewable energy and consequently reduce the emission of GHGs from agroecosystems. Improvement of soil health, minimization in nutrient and water losses, and application of the increased amount of organic fertilizers were found helpful in reducing the carbon footprint. ILMsoil method of cultivation in 0.70 million hectare of jute growing area may reduce about 0.40 million tonnes of CO2-eq from atmosphere every year and provide carbon credit of 1.22 million US$to the farmers of eastern India.","PeriodicalId":48941,"journal":{"name":"Carbon Management","volume":"13 1","pages":"105 - 116"},"PeriodicalIF":2.8000,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Diversification of rice growing areas in Eastern India with integrated soil–crop system management for GHGs mitigation and higher productivity\",\"authors\":\"Akshay K. Singh, A. K. Ghorai, G. Kar\",\"doi\":\"10.1080/17583004.2021.2023049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Mono-cropping, burning of crop residues, imbalanced fertilization and limited use of farm manure are resulting in loss of soil organic carbon (SOC). In this study, integrated soil-crop management (ILMsoil), improved management (IMsoil) and conventional management (CMsoil) was studied to enhance the soil carbon sequestration for mitigation of greenhouse gas (GHG) emissions. The life cycle assessment (LCA) approach was used to estimate carbon footprint from successive crops of rice, mustard and jute with or without intercrops or mixed crops. The adoption of ILMsoil helped in reducing the carbon footprint by 78%. The overall economic yield increased by 25% over IMsoil as well. Net CO2-eq emission was 68% less under ILMsoil as compared to other systems. The reduction in net LCA-GHG emission was mainly due to high SOC sequestration by jute crop and leguminous intercrops and mixed crops. Improved crop diversification and agronomic productivity as used in ILMsoil system may decrease the inputs of non-renewable energy and consequently reduce the emission of GHGs from agroecosystems. Improvement of soil health, minimization in nutrient and water losses, and application of the increased amount of organic fertilizers were found helpful in reducing the carbon footprint. ILMsoil method of cultivation in 0.70 million hectare of jute growing area may reduce about 0.40 million tonnes of CO2-eq from atmosphere every year and provide carbon credit of 1.22 million US$to the farmers of eastern India.\",\"PeriodicalId\":48941,\"journal\":{\"name\":\"Carbon Management\",\"volume\":\"13 1\",\"pages\":\"105 - 116\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2022-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/17583004.2021.2023049\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/17583004.2021.2023049","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Diversification of rice growing areas in Eastern India with integrated soil–crop system management for GHGs mitigation and higher productivity
Abstract Mono-cropping, burning of crop residues, imbalanced fertilization and limited use of farm manure are resulting in loss of soil organic carbon (SOC). In this study, integrated soil-crop management (ILMsoil), improved management (IMsoil) and conventional management (CMsoil) was studied to enhance the soil carbon sequestration for mitigation of greenhouse gas (GHG) emissions. The life cycle assessment (LCA) approach was used to estimate carbon footprint from successive crops of rice, mustard and jute with or without intercrops or mixed crops. The adoption of ILMsoil helped in reducing the carbon footprint by 78%. The overall economic yield increased by 25% over IMsoil as well. Net CO2-eq emission was 68% less under ILMsoil as compared to other systems. The reduction in net LCA-GHG emission was mainly due to high SOC sequestration by jute crop and leguminous intercrops and mixed crops. Improved crop diversification and agronomic productivity as used in ILMsoil system may decrease the inputs of non-renewable energy and consequently reduce the emission of GHGs from agroecosystems. Improvement of soil health, minimization in nutrient and water losses, and application of the increased amount of organic fertilizers were found helpful in reducing the carbon footprint. ILMsoil method of cultivation in 0.70 million hectare of jute growing area may reduce about 0.40 million tonnes of CO2-eq from atmosphere every year and provide carbon credit of 1.22 million US$to the farmers of eastern India.
期刊介绍:
Carbon Management is a scholarly peer-reviewed forum for insights from the diverse array of disciplines that enhance our understanding of carbon dioxide and other GHG interactions – from biology, ecology, chemistry and engineering to law, policy, economics and sociology.
The core aim of Carbon Management is it to examine the options and mechanisms for mitigating the causes and impacts of climate change, which includes mechanisms for reducing emissions and enhancing the removal of GHGs from the atmosphere, as well as metrics used to measure performance of options and mechanisms resulting from international treaties, domestic policies, local regulations, environmental markets, technologies, industrial efforts and consumer choices.
One key aim of the journal is to catalyse intellectual debate in an inclusive and scientific manner on the practical work of policy implementation related to the long-term effort of managing our global GHG emissions and impacts. Decisions made in the near future will have profound impacts on the global climate and biosphere. Carbon Management delivers research findings in an accessible format to inform decisions in the fields of research, education, management and environmental policy.